#CODEHEDGEHOGS

CHANGING THE “S”
INSDLC TO
“SECURE”

Penelope Rozhkova

Secure

Development
Life Cycle

Requirements Testing

Deployment

Planning Development

Perform Code
Reviews

Establish Security
Standards

Analyze App’s
Attack Surface

Dynamic
Analysis

Final Security

ID Security &
Review

Compliance
Obijectives

Perform Static
Analysis

Create
Incident
Response Plan

Review Attack
Surface &
Execute Pentests

Document
App’s Security
Architecture

Perform Risk
Assessment

Create Secure
Templates

Maintenance

Monitor CVEs
of App
Components

Document
Compliance

with Policies &
Standards

OWASP Top 10 Web Application Security Risks

Injection

Broken Authentication
Sensitive Data Exposure
XML External Entities
Broken Access Control
Security Misconfiguration
Cross-Site Scripting (XSS)
Insecure Deserialization

Using Components with Known Vulnerabilities Is the Application Vulnerable?

e How to Prevent It
 Example Attack Scenarios
e References

https://owasp.org/www-project-top-ten/

OWASP Top Ten 2017

A2:2017-Broken Authentication Languages: [en] de

OWASP Top Ten 2017
+— A1:2017-Injection A32017-Se

PDF version

nsitive Data Exposure —

Threat Agents / Attack Vectors Security Weakness
App. Specific Exploitability: 3 Prevalence: 2 Detectability: 2 Technical: 3 Business ?
Attackers have access to hundreds of millions of The prevalence of broken authentication is Attackers have to gain access to only a few
valid username and password combinations for widespread due to the design and accounts, or just one admin account to
credential stuffing, default administrative account implementation of most identity and access compromise the system. Depending on the
lists, automated brute force, and dictionary attack controls. Session management is the bedrock of domain of the application, this may allow money
tools. Session management attacks are well authentication and access controls, and is laundering, social security fraud, and identity
understood, particularly in relation to unexpired present in all stateful applications. theft, or disclose legally protected highly sensitive
session tokens Attackers can detect broken authentication using information
manual means and exploit them using automated
tools with password lists and dictionary attacks.

Is the Application Vulnerable? How to Prevent
Confirmation of the user’s identity, authentication, and session management *Where possible, implement multi-factor authentication to prevent automated
are critical to protect against authentication-related attacks. There may be credential stuffing, brute force, and stolen credential re-use attacks
authentication weaknesses if the application: * Do not ship or deploy with any default credentials, particularly for admin
* Permits automated attacks such as credential stuffing, where the attacker has | users.
a list of valid usernames and passwords * Implement weak-password checks, such as testing new or changed
* Permits brute force or other automated attacks. passwords against a list of the top 10000 worst passwords
* Permits default, weak, or well-known passwords, such as “Password1” or * Align password length, complexity and rotation policies with NIST 800-62 B's
admin/admin® guidelines in section 5.1.1 for Memorized Secrets or other modern, evidence
* Uses weak or ineffective credential recovery and forgot-password processes, | based password policies.
such as "knowledge-based answers”, which cannot be made safe. * Ensure registration, credential recovery, and AP pathways are hardened
* Uses plain text, encrypted, or weakly hashed passwords (see A3:2017- against account enumeration attacks by using the same messages for all
Sensitive Data Exposure). outcomes.
* Has missing or ineffective multi-factor authentication * Limit or increasingly delay failed login attempts. Log all failures and alert
* Exposes Session IDs in the URL (e.g., URL rewriting). administrators when credential stuffing, brute force, or other attacks are
* Does not rotate Session |Ds after successful login. detected.
* Does not properly invalidate Session |Ds. User sessions or authentication * Use a server-side, secure, built-in session manager that generates a new
tokens (particularly single sign-on (SS0) tokens) aren't properly invalidated random session |D with high entropy after login. Session IDs should not be in
during logout or a period of inactivity. the URL, be securely stored and invalidated after logout, idle, and absolute
Is the Application Vulnerable?
PP ° Example Attack Scenarios References
[) H t P t It Scenario #1: Credential stuffing, the use of lists of known passwords, is a OWASP
ow o reven common attack. If an application does not implement automated threat or * OWASP Proactive Controls: Implement Digital Identity
. credential stuffing protections, the application can be used as a password * OWASP Application Security Verification Standard: V2 Authentication
o Exam Ple AttaCk Scenarl os oracle to determine if the credentials are valid * OWASP Application Security Verification Standard: V3 Session Management
Scenario #2: Most authentication attacks occur due to the continued use of * OWASP Testing Guide: |dentity, Authentication
o Refe re nces passwords as a sole factor. Once considered best practices, password rotation | * OWASF Cheat Sheet: Authentication
and complexity requirements are viewed as encouraging users to use, and * OWASP Cheat Sheet: Credential Stuffing
reuse, weak passwords. Organizations are recommended to stop these * OWASP Cheat Sheet: Forgot Password
practices per NIST 800-63 and use multi-factor authentication. * OWASP Cheat Sheet: Session Management
° Scenario #3: Application session timeouts aren't set properly. A user uses a * OWASP Automated Threats Handbook
http s ://owas D.O rg/WWW' D ro I ect - to D -te n/ public computer to access an application. Instead of selecting “logout” the user
= = b - = simply closes the browser tab and walks away. An attacker uses the same External
browser an hour later, and the user is still authenticated *NIST 800-63b: 5.1.1 Memorized Secrets
* CWE-287: Improper Authentication

-384: Session Fixation

https://owasp.org/www-project-top-ten/

‘ ASSET-BASED PROTECTION —

ENGINEERING FOR SUCCESS

“Don’t focus on what is likely to happen—
but instead, focus on what can happen and
be prepared.”

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1.pdf

Devs waiching QA test the product

Insufficient Input Validation
= Symbolic Links

* File Descriptor Attacks

= Race Conditions

" |ncorrect File & Directory Permissions

Preventing SQL Injection Vulnerabilities
* Avoid dynamically generated SQL statements

* Avoid (or take extra precautions when using) system stored :
procedures that use sp_execute, execute or exec https://www.youtube.com/watch?v=baY 3Salhfl0

* Carefully consider permissions
 VALIDATE EVERY USER INPUT

* Use Allow Lists (preferred to Block Lists)

* ID and Properly Escape “special” characters

https://www.securityinnovation.com/course-catalog/penetration-testing-fundamentals/

https://www.youtube.com/watch?v=baY3SaIhfl0

Which Errors Are Included in the

Common Weakness Enumeration
« A Community-Developed List of Software & Hardware Weakness Types TOp 25 Software Errors?

Introduced During Design

Introduced During Implementation

Quality Weaknesses with Indirect Security Impacts

4 Software Written in C)

Software Written in C++

Software Written in Java

\ Software Written in PHP)

Weaknesses in Mobile Applications

CWE Composites

CWE Named Chains

CWE Cross-Section

CWE Simplified Mapping

CWE Entries with Maintenance Notes

CWE Deprecated Entries

CWE Comprehensive View

Weaknesses without Software Fault Patterns

P Yavtavtatavtatatatatetatatatatatarta
WAWAWAWAWAWAWAWAW AW AW AWAWAWAWAWAW,

Weakness Base Elements

http://cwe.mitre.org/data/index.html

| Rank ” ID ” Name H Score ‘
| [1] ”CWE—79 ”Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') H 46.82 ‘
121 [cwe-787 [out-of-bounds Write	46.17		
[31 [cwE-20	[improper Input Validation	33.47	
[41	lcwE-125	Out-of-bounds Read	26.50
[5] ”CWE-119 ”Improper Restriction of Operations within the Bounds of a Memory Buffer H 23.73 ‘			
[6]	[CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 20.69		
[7]		CWE-200	[Exposure of Sensitive Information to an Unauthorized Actor 19.16
[81 [cwE-416	Use After Free	18.87	
[91		cwE-352	Cross-Site Request Forgery (CSRF)
[10] ”CWE-78 ”Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')H 16.44 ‘			
[11]		CWE-190	Integer Overflow or Wraparound 15.81
[12]		CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 13.67	
[13] [CWE-476	NULL Pointer Dereference	835	
[14]		cWE-287 [Improper Authentication	817
[15] ”CWE-434 ”Unrestricted Upload of File with Dangerous Type H 7.38 ‘			
[16] ”CWE-732 ”Incorrect Permission Assignment for Critical Resource H 6.95 ‘			
[17] ”CWE—94 ”Improper Control of Generation of Code ('Code Injection') H 6.53 ‘			
[18] ”CWE-522 HInsufficientIy Protected Credentials H 5.49 ‘			
[19] ”CWE-611 ”Improper Restriction of XML External Entity Reference H 5.33 ‘			
[20] [CWE-798	[Use of Hard-coded Credentials	519	
[21] ”CWE-SOZ ”Deserialization of Untrusted Data H 4.93 ‘			
[22] ”CWE—269 ”Improper Privilege Management H 4.87 ‘			
[23] ”CWE-4OO ”Uncontrolled Resource Consumption H 4.14 ‘			
[24]		cWE-306	Missing Authentication for Critical Function
[25]		cWE-862	Missing Authorization

Attacker Centric

RISK

Vulnerability

jeady |

Software Centric Asset Centric

|ldentify Known Vulnerabilities

|dentify Threats to the Software System Design
Understand the Risks

Understand the Security Controls to Mitigate Risks
Prioritize Risks

Create Risk Reduction Strategy

ient-Side Databases
REST

Native Programing Languages

Integrations Non-technical Risks:
Loss Theft Delays

The earlier in the development lifecycle a risk can be mitigated the more secure and cost-
effective securing the app will be.

uf\\ll Af\ I I"\I I:IA FyYysS\/

C/Ar™ A

~~nAdAina clille?

(e}
Online Information Session 2021

Master the Art of Secure Software Coding
and App Development with the CSSLP

VERACODE | webinar

VeraTalks:
Tackling Developer
Security Training

Speaker: Rey Bango, Director of Developer Relations

010101010101 0101010101 OIOICIOIOIOIOICICIICIOICIOIOIOI OICIOICIOIOIOINICIIOICICIIRIRIRICIOIOICICICICING
OI0I010I010IOI0IICIOIOIOIIOIOICIOICICIOICIOICIOIOI Ol O CIIIOIICIOIOICICICIOICIOIBIOICICIOICICIGINIO

GETINVOLVED ABOUT Q.

JUNE 23-24, 2021

L ’ B
REGISTER FOR FREE MATIHEW BUTLER

North America 11am-4pm ET - 23rd June | APJ 10am - 3pm AEDT 24th June | Europe 10am - 3pm GMT 24th June

DevSecCon -

Master the Art of Secure Software Coding and App Deve
CSSLP

John Ng, Mox Bank; Pishu Mahtani, (ISC)? Authorised Instructor; To

The modern software developer faces an enormous amount of chal
continuously creating innovative apps to ensuring high quality and n

1 week ago | 66 mins

VeraTalks: Tackling Developer Security Training
Rey Bango, Veracode Director of Developer Relations

Most AppSec programs forget that there is only one team that can fix
development team. While an AppSec strategy based on scanni...

1 week ago | 26 mins

Secure Coding Best Practices
Matthew Butler, Principal Engineer

Computer systems are under siege 24 hours a day, day in and day o
infrastructure designed to protect those systems, won’t. Th...

1 month ago | 58 mins

https://www.devseccon.com/devseccon24-2021/

MIv.LIIybug

| Spy: An Insecure Delivery Pipeline - Rosemary Wang, Developer Advocate at HashiCorp

https://www.devseccon.com/devseccon24-2021/

Founder: Tanya Janca

We Hack Purple Blog

We Hack Purple is a Canadian company
dedicated to helping anyone and
everyone create secure software. We
have an online academy with on-demand

Pushing Left, Like a Boss—Part 5.7— Pushing Left, Like a Boss—Part 5.6 — Pushing Left, Like a Boss — Part 5.5 File Pushing Left, Like a Boss — Part 5.4
. I . . . I . URL Parameters Redirects and Forwards Uploads Session Management
VI rt u a Sec u rlty tra I n I n g[a n O n I n e Never put information in the parameters in the Allowing files to be uploaded to your t is my firm opinion that only the session
—
RL of y plicat applications (and therefore your network)... management features in

community for security professionals to
connect with their peers and learn, a
podcast for newcomers to in our
industry, and a newsletter chock full of
free content and funny memes. | -

Pushing Left, Like a Boss—Part 5.3— Pushing Left, Like a Boss — Part 5.2- Use Pushing Left, Like a Boss — Part 5.1 — Pushing Left, Like a Boss: Part4 —
Browser and Client-Side Hardening Safe Dependencies Input Validation, Output Encoding and Secure Coding
nd client-side hard Accc ources between 70-90% Parameterized Queries n the previous article in this series we
enabl nd g th uj of ay tained within Th t »sts will break up the discussed secure design concepts...
sec de from

RlAacc

Pushing Left, Like a Boss! — Part 3: Pushing Left, Like a Boss! — Part 2: Pushing Left, Like a Boss: Part 1 One Year Anniversary of We Hack
Secure Design Security Requirements . Purple
O In all of the talks and articles | have eve
https.//wehackpurple.c0|n/about/ ol ;
n the previous article in this series we In the previous article in this series we written and... One year ago, | decided to start my own
scussed security reguirements. When... discussed why ensuring the...

company. It's called We...

https://academy.wehackpurple.com/
https://community.wehackpurple.com/
https://newsletter.wehackpurple.com/
https://wehackpurple.com/about/

E .
=
Tournaments Training Courses v Assessments Resources

SECURE CODE
WARRIOR

Identify Solution

Determine the correct fix from a number of different proposed solutions for the vulnerability

listed below. These solutions will be full code repositories, where completely different

approaches may have been taken to address the problem. QL VIEW SOLUTIONS
J 1 IONS

This is the vulnerability you are trying to

identify the correct solution for.

Injection Flaws - SQL Injection

Vulnerability Category

- -
To prevent the Unprotected Transport of ')
Credentials, developers should: ‘h N 0“.]\7 S *‘/

Active Missions

Level 1: A from &= Botswana is attacking the application View
Level 2: A from M® Niger is attacking the application View
Level 3: A from i@ Canada is attacking the application View
Level 4: A from i Mexico is attacking the application View
Level 5: A from @ China is attacking the application View
Level 6: A from @ Germany is attacking the application View
Level 7: A from W Italy is attacking the application View

Level 8: A from W France is attacking the application View

cmd+ctro

Ranges MyStats Hacking 101

RANGES

Financial

Shadow Bank

Skadow Bark is the premier bank for people
who love cryptocurrencies and hate those pesky
‘miminenm password requirements. Transfer
money, request 3 Joan, or buy and sell stocks and
QETEOCOES.

Mobile/ToT
Runstoppable

An Android fimess tracker that vl turm you into
3 Russtoppable buman beisg. NOTE: many
challenipes mut be solved trczh flag
subeiasicn found on the "Challeages” page

0 challenges solved

NOT AVAILABLE

Cloud
Forescient

Welcome to yoex first dy at Forescient! Please
create 2 Portal account 10 start your journey.

HR
AccountAll

AccountAll is the HR portal that tarns humans

0 challangss solved

NOT AVAILABLE

Financial
The Gold Standard

Skadow Back account g0t hacked” Switch 1 the
Gold Standard for beightened security 3ad 3
ROOM FULL OF GOLD.

NOT AVAILABLE

0 challenges solved

NOT AVAILABLE

Retail
Shred

Skred i your one-stop thop for skateboseds,
=pexy pant, stencils and all the other wappmes of
Booligmiem Show off your best work in the
raffini gallery, or buy 3 gift card for the pesty

Cryptocurrency
DigiExchange

Go arazy with arypto-curreacies!

ICMCP_Google 2021

Join anothe /ent

BHIS ANTISYPHON CYBER RANGE

Scoreboard Rules Stats Logout Dashboard

etaCTF

% CyberChef

Flag Format (solved by 1055 teams) 50

&f Ul Settings

[% Bonus

(o]

All flags should be obvious and a string_separated_with_und3rscores. Most of the flags will be surrounded by mMetacTF{} as well, but in the cases where
that would make the problem too trivial, we did not include the MetacTF{} part.

If the flag will be in a different format, we will specify that in the problem description. Additionally, all flags are case-insensitive. If you solve this
challenge, make sure to tell your teammates about the flag format!

?

Please rate this problem: ¥y

3,770 37 Mf\lﬁf\ EI e Q- P_F\Ml\ﬁ

score rank

2

Code

a
Porcup

INe

1. Application Security both on the offensive and defensive aspect

2. Deep understanding of web vulnerabilities / Fixing vulnerabilities - Hands on
IS @ must
3. Experience with SQLi and XSS
4. XSRF Experience

5. Code review

IF YOU CODE SECURELY,
6. APl YOU ARE WELL-POSITIONED
_ TO TRANSITION INTO
[. XXE and remediation CYPERSECURITY.

8. Appsec and CI/CD tools. #codehedgehogs

Bio

Independent Contractor
MUTC CyberAcademy Grad
WiCyS Mentor
CyberPatriot Coach

BHIS Nerd Herder
GenCyber Instructor

O piranhamama
- piranhamama#8888

peneloperozhkovacsia
@RozhkovaCSIA

‘ s

B - == P

200, 2000008

Animal (Owl, mouse, hedgehog and porcupine) photos courtesy of https://unsplash.com/

Slide deck available at https://github.com/piranhamama/

