
Save Time with Modern
Search Techniques

Mark Jeanmougin, SANS Community Instructor

© 2022 Mark Jeanmougin | All Rights Reserved | Version 4.0.0.2

Save Time With Modern Search Techniques

Abstract: Many of our tools and techniques for working with large data sets are tweaked

versions of what we did back when we had one CPU and a mechanical hard drive. This

presentation explores how to approach these data sets with multi-core CPU's and fast

NVMe storage. Special attention is paid to Digital Forensics & Incident Response (DFIR)

use cases, but the techniques are more general. This is a trip into GNU Parallel, xargs,

and other techniques to maximize the parallel processing capabilities of modern CPU's

and storage. Examples include searching, anti-virus, and photo processing. The techniques

are generally applicable.

Author: Mark Jeanmougin / markjx@gmail.com / @markjx01

Supplemental material at https://github.com/markjx/search2018

1/12/2022

1

https://github.com/markjx Save Time with Modern Search Techniques 2

Disclaimer

The information presented here is not intended for use by

anyone. If you try to follow along at home and get a

hangnail, instantiate global thermonuclear war, or have

other adverse side effects: You’re on your own. Mark, as

well as his past, current, or future employers, family

members, and pets disclaim any and all responsibility from

now until the end of the Universe.

The author, presenter, and other people who’s information is contained in this document disclaim

any and all responsibility for any use of any information contained herein.

1/12/2022

2

https://github.com/markjx Save Time with Modern Search Techniques 3

Monday Pre-Coffee

Boss discovers Alexa Top 1 Million

How often do we go there?

Before I do something like this:
ls SG*/SG* | while read i ; do

zgrep -f /var/opt/ldata/paraproj/alexa/top-1m $i

done > bigOutfile.log

Start with
time zgrep -f /var/opt/ldata/paraproj/alexa/top-1m \

SG_main__470802230000.log.gz > out

If these commands don’t make sense, don’t worry. We’ll get there.

The Alexa Top 1 Million went away… and then came back. See also:

• https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-

websites-

• https://www.alexa.com/topsites

• http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

• https://blog.majestic.com/development/alexa-top-1-million-sites-retired-heres-majestic-million/

• https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/

1/12/2022

3

https://github.com/markjx Save Time with Modern Search Techniques 4

Monday

Get coffee; check email; still running

Check open tickets; still running

Work weekend incidents; still running

Go to lunch; STILL RUNNING

Update boss

Get cupcakes

That runs for 30 minutes while you get coffee and check your email.

That runs for another 30 minutes while you check for updates to your open vendor cases about their

stuff not working they way they told your boss it would

It runs for another hour while you triage open tickets from the weekend.

It runs through lunch while you finally get to your day job.

You get back from lunch (That fancy Indian place that Hannah likes. Chicken Tikka Masala. It was

delicious.) and IT IS STILL RUNNING! Update the boss to keep him off your back.

At first, it was nice to have this keep running; it kept your boss off your back. Now, any

investigation of employee activity is slower because this stupid query is still running.

Update boss: let it run over night. Remind him that you’re only looking at a fraction of the logs.

Time to go get cupcakes.

1/12/2022

4

https://github.com/markjx Save Time with Modern Search Techniques 5

Tuesday Morning

• STILL RUNNING!

• >990min for 1GB of logs. I have 55GB. Doing some

maths…

• This’ll take >1 month! (Actually… 3y10m11d18h34m38s)

• Find a YouTube video called “Save Time with Modern

Search Techniques”

• Find your boss’s corporate card.

• Overnight shipping is a beautiful thing…

That runs all night.

The zgrep has been running all night. At this point, it has taken 990min of CPU time. Your test

search is on 1GB of logs, you have 55GB of logs. Do some math…

THIS WILL TAKE OVER A MONTH!

There’s gotta be a better way!

Find a YouTube video of a SANS presentation called “Save Time with Modern Search

Techniques”. And watch it.

* https://www.youtube.com/watch?v=gOcBaY0e5AA

Where’s that corporate credit card? :)

Amazon Prime next day delivery FTW!!!

FYI 1: The zgrep takes ~23GB of RAM. If you can’t give that much to the process, then expect

things to slow down due to swapping.

FYI 2: I ran the 1GB file for 14.16 days to get through 580,465,728 bytes (cat /proc/79780/io). At

that rate (40MB/day), it’d take 1406 days with this method. That’s 3y 10m 11d 18h 34m 38s;

approximately. ☺

1/12/2022

5

https://github.com/markjx Save Time with Modern Search Techniques 6

Wednesday Morning

Build the machine

Load the data, 20 minute copy

1/12/2022

6

https://github.com/markjx Save Time with Modern Search Techniques 7

Wednesday Morning

Build the machine

Load the data, 20 minute copy
$ time ls SG*/*lz4 | shuf | parallel --nice 14 lz4cat {} \| grep -a -F -f

/var/opt/arraytest/alexa/top-1m \| wc -l | totes1.awk

751296241

real 0m43.617s

user 10m13.816s

sys 10m47.671s

This uses GNU Parallel, which I’ll cite by saying:
Academic tradition requires you to cite works you base your article on.

When using programs that use GNU Parallel to process data for publication

please cite:

O. Tange (2011): GNU Parallel - The Command-Line Power Tool,

;login: The USENIX Magazine, February 2011:42-47.

1/12/2022

7

https://github.com/markjx Save Time with Modern Search Techniques 8

That’s Not What I Meant!

Don’t want to see what is on the Top 1million list!

What’s not on it?

Re-Run with “grep –v”
$ time ls SG*/*lz4 | shuf | parallel --nice 14 lz4cat {} \| grep -v -a -F -f

/var/opt/arraytest/alexa/top-1m \| wc -l | totes1.awk

0

real 0m35.313s

user 8m13.341s

sys 8m30.060s

We’ll explain the command specifics later…

1/12/2022

8

https://github.com/markjx Save Time with Modern Search Techniques 9

What about a simple example?

Maybe you get a report from your Threat Intel team saying

that a certain URL is bad. So, do we have any hits to that

URL from our network?
$ time ls SG*/*lz4 | shuf | parallel --nice 14 lz4cat {} \| grep -F

tacobell.com

real 0m28.711s

user 5m5.227s

sys 7m41.065s

You need to provide a report of all activity for one user going back as far as you can. Or, maybe

you get a report from your Threat Intel team saying that a certain URL is bad. So, do we have any

hits to that URL from our network?

1/12/2022

9

https://github.com/markjx Save Time with Modern Search Techniques 10

How big is that data set, anyway?

750 mega logs (750 million logs)

305GB of data. 55GB gzip’ed

¾ of a Billion logs searched in ½ of a minute.

Rate of 1.5 Billion logs / minute

Could your SIEM do that?

Many people really like their SIEM. Some people are going to SEC455 or SEC555 later this week

and are going to learn awesome ways to build and use SIEM’s.

1/12/2022

10

https://github.com/markjx Save Time with Modern Search Techniques 12

What You’ll Learn

I’m hear to teach techniques

I’ll demo on a few data sets. Think of your data sets!

Slides at: https://github.com/markjx/search2018/

Ask questions!

I’m primarily here to teach you some techniques. I’ll demonstrate those techniques on some data

sets. Throughout this presentation, be thinking of other data sets you have where these techniques

may work.

Ask questions! Although, I reserve the right to ask you to hold certain questions until the end.

1/12/2022

12

https://github.com/markjx Save Time with Modern Search Techniques 13

Agenda

✓ Intro

❑ whoami

❑ Theory

❑ Existing Tools: xargs & GNU Parallel

❑ Parsing & Splitting

❑ At Home

❑ Demos

❑ New Tools

When you’re watching TV with someone and they rewind to see a funny part, or the make sure they

caught a key part of the plot, or rewatch a particularly sporty part of a sports thing, they’re also

saying this is important to me and I want to share it with you.

1/12/2022

13

https://github.com/markjx Save Time with Modern Search Techniques 14

$ whoami

• Mark Jeanmougin (markjx@gmail.com / @markjx01)

• Career in Blue Team

• SANS Instructor

• Digital Forensics & Incident Response

• Inappropriate Internet Use & Academic Fraud

• IT for >20 years. Security since 2000.

• Useless Superpowers

• I can fold a fitted sheet & eat a single Girl Scout cookie

Mark Jeanmougin

markjx@gmail.com / https://twitter.com/markjx01

https://markjx.blogspot.com/

https://github.com/markjx

https://www.linkedin.com/in/markjx

Blue Team for my whole career.

SANS Community Instructor

Digital Forensics & Incident Response

Security Operations Center Analyst & Manager

Started “Experimenting” with UNIX in college.

Been doing IT stuff for over 20 years now. Security since 2000.

While I do have a $DayJob, this work is not endorsed or sponsored by them.

Surprisingly, it looks like there’s no Trademark associated with the phrase “Girl Scout Cookie”. At

least, according to: https://www.girlscouts.org/en/cookies/all-about-cookies.html on 4/17/2018 .

1/12/2022

14

https://github.com/markjx Save Time with Modern Search Techniques 17

Change your Code

• Fine Grained Parallelism

• Cinebench / Blender / Handbrake

• Some Compression / Decompression tools:

• 7zip / pigz / pbzip2 / xz –T 30

• Coarse Grained Parallelism

• Not Searching.

• Fool our search tools by splitting our input data

Coarse Grained Parallelism

Plenty of things don’t; like searching. BUT, if you have huge amounts of data, you can run the

same search against multiple pieces of data in parallel. In Cyber Security, we certainly have plenty

of data!

1/12/2022

17

https://github.com/markjx Save Time with Modern Search Techniques 18

Change your Data

• You want “many” input files. >1 per CPU core

• Not too small: >>1 sec per file

• Only have one multi-GB file? Split to the rescue!
$ split -a 2 -d -l 2000000 192.168.1.13-20180113.log 192.168.1.13-20180113.spl

$ ls –al 192.168.1.13-20180113.spl?? | head -3

192.168.1.13-20180113.spl00

192.168.1.13-20180113.spl01

192.168.1.13-20180113.spl02

• Compress, too?

split man page:

NAME

split - split a file into pieces

SYNOPSIS

split [OPTION]... [FILE [PREFIX]]

DESCRIPTION

Output pieces of FILE to PREFIXaa, PREFIXab, ...; default size is 1000

lines, and default PREFIX is 'x'.

-a, --suffix-length=N

generate suffixes of length N (default 2)

-d use numeric suffixes starting at 0, not alphabetic

-l, --lines=NUMBER

put NUMBER lines/records per output file

-n, --number=CHUNKS

generate CHUNKS output files; see explanation below

1/12/2022

18

https://github.com/markjx Save Time with Modern Search Techniques 19

Old Code

Do you go through logs like this?
$ time ls http-201* | while read i

do

xzcat $i | grep badsite.org

done | wc –l

0

real 7m26.890s

user 8m0.930s

sys 0m14.689s

Done on the “CERT-insider r5.2” dataset.

1/12/2022

19

https://github.com/markjx Save Time with Modern Search Techniques 20

New Code - xargs

Exploit your hardware’s parallelism!
$ time ls http-201* | xargs -P 64 -L 8 xzcat | grep badsite.org | wc –c

0

real 1m59.148s

user 12m31.649s

sys 10m56.685s

That’s almost four times as fast!!!

Explained on next slide

1/12/2022

20

https://github.com/markjx Save Time with Modern Search Techniques 21

xargs – Breakdown!

What’s that xargs command line?

xargs -P 64 -L 8 zcat

• xargs takes a list of arguments and executes a command one

or more times with those arguments

• -P: Number of instances to kick off in Parallel

• -L: Number of Lines from the input file to assign to each job

Done on the cert-insider r5.2 dataset on a single NVMe drive.

-P 64 was basically chosen at random. I wanted a number greater than my number of CPU cores

(16). So I quadrupled it. My gut tells me that there’s not much speed improvement going for 32-64,

but #YOLO!

-L 8 gave me about 100 jobs to run. I wanted to L to be > 2x P. This seemed about right.

Had this been a scientific study or a production implementation, I’d have done some more testing

here.

1/12/2022

21

https://github.com/markjx Save Time with Modern Search Techniques 22

New Tool: GNU Parallel

• Plenty of documentation:

• 63 page man page (man -t parallel | ps2pdf - parallel.pdf)

• man parallel_tutorial: another 44 pages of light reading

• Total of 193 pages across 11 docs

• Available in most Linux / UNIX environments

I needed something to do multiple downloads in parallel from a video sharing site. I was going to

write a shell script to do this, then found parallel.

Available in:

Fedora: dnf install parallel

CentOS: yum install epel-release; yum install parallel

Ubuntu 20.04 LTS (REMnux, SIFT, etc): apt install parallel

Ubuntu 21.10: apt install parallel

1/12/2022

22

https://github.com/markjx Save Time with Modern Search Techniques 23

Parallel: Baseline

How long does it take? The old way:
time ls nvme[01]/SG*/*lz4 | while read i

do

lz4cat $i | grep tacobell.com

done | wc –l

real 7m4.406s

user 6m15.146s

sys 1m46.403s

750 Megalogs & 305GB in 7m

Photo Credit: My cat, Ollie, just chillin’ like a villin.

1/12/2022

23

https://github.com/markjx Save Time with Modern Search Techniques 24

Parallel: Step 1

$ time ls nvme[01]/SG*/*lz4 | \

parallel -u lz4cat {} \| grep tacobell.com | wc -l

real 0m49.910s

user 9m13.037s

sys 4m34.285s

7 min to <1m!

Normally, parallel “chunks” up the output so that it is put out in the same order as it is generated.

For many applications, this is the desired behavior. For this run, I just want to know how many

people went to tacobell.com in search of tasty tacos. The “-u” option to parallel tells it to output

data as it is ready rather than in order. According to the man page, this is faster.

Photo Credit: My cat, Ceili, having recently been shaved.

1/12/2022

24

https://github.com/markjx Save Time with Modern Search Techniques 25

Parallel: Step 2

Use all drives better & Multiple “wc –l”s
$ time ls nvme[01]/SG*/*lz4 | shuf | \

parallel -u lz4cat {} \| grep tacobell.com \| wc -l | totes1.awk

real 0m44.908s

user 9m42.136s

sys 5m7.225s

Cut 10%

Photo Credit: An Indy Lights car (I think?) at Mid-Ohio 2018. Taken by Mark Jeanmougin.

1/12/2022

25

https://github.com/markjx Save Time with Modern Search Techniques 26

Parallel: Step 3

No more Regular Expressions!
$ time ls nvme[01]/SG*/*lz4 | shuf | \

parallel -u lz4cat {} \| grep -F tacobell.com \| wc -l | totes1.awk

real 0m42.402s

user 9m49.881s

sys 5m40.397s

Cut 5%

We’ll do a more dramatic RE / no RE example later…

Photo Credit: An IndyCar at Mid-Ohio 2018. Taken by Mark Jeanmougin.

1/12/2022

26

https://github.com/markjx Save Time with Modern Search Techniques 27

Parallel: Step 4

Run at >100%
$ time ls nvme[01]/SG*/*lz4 | shuf | \

parallel -j 110% -u lz4cat {} \| grep -F tacobell.com \| wc -l | totes1.awk

real 0m40.149s

user 10m16.371s

sys 5m42.126s

Cut 5%

I did some testing in 10% increments starting at 100% going to 150%. 110% seemed to be the

sweet spot.

• Your mileage may vary.

Photo Credit: Ferrari Formula One car driven by Sebastian Vettel at Montreal 2018. Taken by Mark

Jeanmougin.

1/12/2022

27

https://github.com/markjx Save Time with Modern Search Techniques 28

Parallel: Command Breakdown!

• $ time ls nvme[01]/SG*/*lz4 | shuf | parallel -j 110% -u lz4cat {} \|

grep -F tacobell.com \| wc -l | totes1.awk

• shuf: randomize the order of what’s passed to it

• parallel
• -j 110%: run 11 processes for each 10 CPU threads

• -u: Output is printed as soon as possible (output from multiple jobs may

be mixed)

• lz4cat: reads lz4 compressed data and dumps it out

• grep –F : Search for a string without regular expressions

• wc –l : return the number of lines

• totes1.awk: sum the first field of input (written by Mark J)

This slide is more for viewing printouts.

1/12/2022

28

https://github.com/markjx Save Time with Modern Search Techniques 29

Decompression vs. “Real Work” 1/2

Threat Intel give you a list of 2320 malicious URL’s & IP’s.

Do we have any hits?
$ time ls nvme[01]/SG*/*lz4 | parallel -u lz4cat {} \| grep -f

/var/opt/ldata/paraproj/malwaredomainlist/bad-urls | wc -l

real 677m29.743s

user 15936m22.485s

sys 45m0.255s

List is courtesy of: http://www.malwaredomainlist.com/forums/index.php?topic=3270.0

1/12/2022

29

https://github.com/markjx Save Time with Modern Search Techniques 30

Decompression vs. “Real Work” 2/2

Using all our Parallel tricks & no Regular Expressions:
$ time ls nvme[01]/SG*/*lz4 | shuf | parallel -j 110% -u lz4cat {} \| grep -F

-f /var/opt/ldata/paraproj/malwaredomainlist/bad-urls \| wc -l | totes1.awk

real 1m36.837s

user 29m22.391s

sys 5m9.262s

Over ELEVEN HOURS -> 96 seconds!

The “-F” option to grep tells it to treat data as strings, not as regular expressions. MUCH faster.

1/12/2022

30

https://github.com/markjx Save Time with Modern Search Techniques 31

Parsing, not just grep’ing

Here’s an example of
parsing & summarization
rather than just searching

3m45s (or so) to get a
report of the top 15 sites

printurl.awk is available from the Github site. Written by Mark Jeanmougin.

1/12/2022

31

https://github.com/markjx Save Time with Modern Search Techniques 32

When to Split Large Files

Split large files into
chunks to maximize CPU
Utilization

Output of “sar 2” command.

See how CPU utilization trails off over time? That’s bad. Split your largest files into chunks so the

work is more balanced.

1/12/2022

32

https://github.com/markjx Save Time with Modern Search Techniques 33

Two Quick Examples

1. Zeek / Bro

2. ClamAV

I had a customer with about 10-15 Security Onion sensors that we’re seeing about 1Gbit/sec of

traffic each. The traffic was more small sessions than large ones. Searching through dozens of GB’s

of bro (or zeek) logs was normal. Management was frustrated that searches took too long. SOC was

frustrated: Searching a few days took “too long”; no sense in asking to go back a few weeks. They

were frustrated that they had so much data but couldn’t get value out of it.

This was before ELK was incorporated into Security Onion.

For just a few thousand dollars, we stood up a 32core machine with a few TB of NVMe storage.

Example 3 in this section is the best example, but it is also the best thing to cut for time if you need.

1/12/2022

33

https://github.com/markjx Save Time with Modern Search Techniques 34

What Started All This?

bro!

Threat Intel and “bad” Domain Names

I had a customer with about 10-15 Security Onion sensors that we’re seeing about 1Gbit/sec of

traffic each. The traffic was more small sessions than large ones. Searching through dozens of GB’s

of bro (or zeek) logs was normal. Management was frustrated that searches took too long. SOC was

frustrated: Searching a few days took “too long”; no sense in asking to go back a few weeks. They

were frustrated that they had so much data but couldn’t get value out of it.

This was before ELK was incorporated into Security Onion.

For just a few thousand dollars, we stood up a 32core machine with a few TB of NVMe storage.

Example 3 in this section is the best example, but it is also the best thing to cut for time if you need.

1/12/2022

34

https://github.com/markjx Save Time with Modern Search Techniques 43

3: Serial Small File Check

78735 bro log files; 231,244MB compressed to 15,379MB

• 637,084,430 log events

Cross Reference with Alexa Top 1million, small files, serial
$ time find 2* -type f | grep : | xargs zgrep -c -v -F -f \

/var/opt/data0/paraproj/alexa/top-1m | totes1.awk

real 3576m25.396s

user 3286m22.736s

sys 295m51.797s

$ 59.6h

Don’t take these speedup percentages for this exercise as Gold Standard. During testing, the

computer was doing other things at the time with up to 6 cores pegged for other tasks.

1/12/2022

43

https://github.com/markjx Save Time with Modern Search Techniques 44

3: Serial Large File Check

4262 bro log files; 232,062MB compressed to 16,298MB

• 637,084,430 log events

Cross Reference with Alexa Top 1million, large files, serial
$ time find 2* -type f | grep -v : | xargs zgrep -c -v -F -f

/var/opt/data0/paraproj/alexa/top-1m | totes1.awk

real 403m17.795s

user 380m6.731s

sys 30m25.214s

$ 6.7h

Don’t take these speedup percentages for this exercise as Gold Standard. During testing, the

computer was doing other things at the time with up to 6 cores pegged for other tasks.

1/12/2022

44

https://github.com/markjx Save Time with Modern Search Techniques 45

3: Parallel Small File Check

78735 bro log files; 231,244MB compressed to 15,379MB

• 637,084,430 log events

Cross Reference with Alexa Top 1million, small files, serial
$ time find 2* -type f | grep : | shuf | xargs -P 32 -L 100 \

zgrep -c -v -F -f /var/opt/data0/paraproj/alexa/top-1m | totes1.awk

real 157m54.528s

user 3688m42.650s

sys 646m56.955s

$ 2.6h

Don’t take these speedup percentages for this exercise as Gold Standard. During testing, the

computer was doing other things at the time with up to 6 cores pegged for other tasks.

1/12/2022

45

https://github.com/markjx Save Time with Modern Search Techniques 46

3: Parallel Large File Check

4262 bro log files; 232,062MB compressed to 16,298MB

• 637,084,430 log events

Cross Reference with Alexa Top 1million, large files, serial
$ time find 2* -type f | grep -v : | shuf | xargs -P 32 -L 100 \

zgrep -c -v -F -f /var/opt/data0/paraproj/alexa/top-1m | totes1.awk

real 35m40.662s

user 576m5.104s

sys 76m35.347s

$
100:1

Speedup

Don’t take these speedup percentages for this exercise as Gold Standard. During testing, the

computer was doing other things at the time with up to 6 cores pegged for other tasks.

1/12/2022

46

https://github.com/markjx Save Time with Modern Search Techniques 47

Whatify?

dailyify: The process of
converting your bro log
files into daily batches
rather than tiny hourly
files to make searching
faster

$ cat dailyify.sh

#!/bin/bash

time ls | cut -f 1 -d. | sort -u | while read i

do

echo $i

ls ${i}* | xargs zcat | pigz > daily.gz

mv daily.gz ${i}.gz

done

$

Available from:

https://github.com/markjx/search2018/blob/master/dailyify.sh

1/12/2022

47

https://github.com/markjx Save Time with Modern Search Techniques 48

bro Extracted Files & ClamAV - Serial

1922 exe files extracted by bro. 11,635MB
$ time clamscan -i --log=logfile ./extracted/

----------- SCAN SUMMARY -----------

Known viruses: 6673868

Engine version: 0.100.1

Scanned directories: 1

Scanned files: 1921

Infected files: 53

Data scanned: 9044.61 MB

Data read: 11627.12 MB (ratio 0.78:1)

Time: 2083.731 sec (34 m 43 s)

real 34m43.741s

user 34m16.451s

sys 0m17.710s

$

1/12/2022

48

https://github.com/markjx Save Time with Modern Search Techniques 49

bro Extracted Files & ClamAV - Parallel

1922 exe files extracted by bro. 11,635MB
$ find extracted -type f > list

$ split -n l/48 -a 2 -d list list.

$ time ls list.* | parallel clamscan -f {} -i --log={}.log

real 3m47.688s

user 81m27.013s

sys 1m22.020s

$

10:1

Don’t take these speedup percentages for this exercise as Gold Standard. During testing, the

computer was doing other things at the time with up to 6 cores pegged for other tasks.

1/12/2022

49

https://github.com/markjx Save Time with Modern Search Techniques 50

ClamAV Breakdown

$ find extracted -type f > list

Create list of files to be examined

$ split -n l/48 -a 2 -d list list.

Split into 48 chunks at line breaks (ell over 48). 2 character

decimal suffix.

$ time ls list.* | parallel clamscan -f {} -i --log={}.log

Kick off clamscan to examine each chunk of files.

1/12/2022

50

https://github.com/markjx Save Time with Modern Search Techniques 51

How to do this at $home?

Get the data

Store the data

Process the data

Get the Data

Syslog

FTP / SCP daily exports

Store the Data

I like having one log file per generator per day. For example:

2018/02/06/firewall1.log

2018/02/06/firewall2.log

2018/02/06/proxy1.log

2018/02/06/proxy2.log

Process the Data

1/12/2022

51

https://github.com/markjx Save Time with Modern Search Techniques 52

Process the Data

• What do you need?

• Multi-core CPU (Threadripper|EPYC). SSD’s (NVMe FTW!)

• ASCII Logs (jq, XML, syslog, whatever)

• How to get the hardware?

• Xeon workstation from HP, Dell, Lenovo, etc

Threadripper Pro Workstation from Lenovo, etc.

• Build your own Threadripper box. (Gamer on

helpdesk?)

• My build: https://pcpartpicker.com/list/NLQGBc

You’ll also need a Linux environment. From what I know about PowerShell, it isn’t powerful

enough for this … yet.

1/12/2022

52

https://github.com/markjx Save Time with Modern Search Techniques 53

Organizational Acceptance

• How to justify the cost?

• Price of a cup of coffee / day over 3y

• Hardware & Software “Support”?

• Your IT, desktop, etc support teams with react in 1 of 2 ways:

Hatred or Joy

• Do you have other Linux workstations?

• “Server”?

• Security “Appliance”?

• (Cloud? 🤮)

1/12/2022

53

https://github.com/markjx Save Time with Modern Search Techniques 54

Demos!

1. CPU intensive part is decompression

2. CPU intensive part is searching

1/12/2022

54

https://github.com/markjx Save Time with Modern Search Techniques 56

Demo: Decompression is hard

Decompres-

sion is CPU

intensive

50sec video

Setup is something like:

xterm &

xterm –rv –e sar 2 &

xterm –rv –e iostat 2 /dev/sd? /dev/nvme?p1 &

xterm –e top &

Command:

time ls nvme?/SG*/*lz4 | shuf | parallel lz4cat {} \| wc –c | totes1.awk

I recorded this on my Fedora workstation with “recordmydesktop –x 2570 –y 1 --width 1000 --

height 700”. The output is ogv, which PowerPoint doesn’t like. I converted to mp4 with “ffmpeg -i

demo.ogv -f mp4 demo.mp4”. You can also use the “--windowid” option to only record a single

window. You find out the windowid with the “xwininfo” command

1/12/2022

56

https://github.com/markjx Save Time with Modern Search Techniques 58

Demo: Searching is hard

Searching

is CPU

intensive

65sec video

Command:

wc -l /var/opt/data0/paraproj/malwaredomainlist/bad-urls

time ls nvme?/SG*/*lz4 | shuf | parallel –j 110% lz4cat {} \| grep -F -f

/var/opt/data0/paraproj/malwaredomainlist/bad-urls \| wc -l | totes1.awk

For a live demo, ask people for interesting sites and do something like

$ time ls nvme?/SG*/*lz4 | shuf | parallel lz4cat {} \| grep -F -e tacobell.com -e microsoft.com -e

oracle.com \| wc -c | totes1.awk

1/12/2022

58

https://github.com/markjx Save Time with Modern Search Techniques 59

squishycat

cat compressed

files

• gzip

• bzip2

• lz4

• xz

Or

uncompressed!

Photo Credit: My cat, Ceili, just before and after being shaved. Taken by Mark Jeanmougin.

https://github.com/markjx/search2018/

squishycat is like the normal UNIX cat command except: When dealing with normal ASCII text, it

just cats it. When dealing with data compressed, it decompresses it first, then cat’s it. It currently

supports gzip, bzip2, lz4, and xz.

1/12/2022

59

https://github.com/markjx Save Time with Modern Search Techniques 60

squishycat: Use

Generated compressed files:

ifn=SG_main__470802230000.log ;

for i in gzip bzip2 xz lz4

do

ofn=${i}.out ;

(time cat $ifn | $i > ${ifn}.$i) >$ofn 2>&1 &

done

1/12/2022

60

https://github.com/markjx Save Time with Modern Search Techniques 61

grepwide

Rounds up all the search

techniques discussed in this

paper

Files in your home directory:

• look4me: What you’re

searching for

• No blank lines!

• outfile: Saves output here

https://github.com/markjx/search2018/

grepwide implements the parallelization techniques in this presentation. It uses two files in your

home directory:

• look4me: list of regular expressions, one per line, that you’re looking for. NO BLANK LINES!

• outfile: whatever lines match the RE’s in look4me are saved in this file

1/12/2022

61

https://github.com/markjx Save Time with Modern Search Techniques 62

Bibliography

See notes for some of the sites that I found useful in this

research, in no particular order

Some of the sites that proved useful in this research, in no particular order:

http://www.secrepo.com/

https://www.netresec.com/?page=PcapFiles

https://virusshare.com/about.4n6

https://archive.org/details/datasets

http://www.unb.ca/cic/datasets/index.html

https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-

Datasets/

https://cloudstor.aarnet.edu.au/plus/index.php/s/2DhnLGDdEECo4ys?path=%2FUNSW-

NB15%20-%20pcap%20files

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

http://commoncrawl.org/the-data/get-started/

https://registry.opendata.aws/

https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-318-1/

https://ictf.cs.ucsb.edu/pages/the-2016-2017-ictf.html

https://download.netresec.com/pcap/

ftp://download.iwlab.foi.se/dataset/smia2012/network_traffic/pcap/

ftp://download.iwlab.foi.se/dataset/smia2011/Network_traffic/

ftp://download.iwlab.foi.se/dataset/smia2012/network_traffic/pcap/

ftp://ftp.bro-ids.org/enterprise-traces/hdr-traces05/

http://cybercrime-tracker.net/

http://cybercrime-track er.net/all.php

1/12/2022

62

http://dfir.to/DFIRCON-Challenge-15

http://dfir.to/FOR572-Challenge-Data

http://downloads.digitalcorpora.org/corpora/files/govdocs1/zipfiles/

http://log-sharing.dreamhosters.com/

http://osint.bambenekconsulting.com/feeds/dga-feed.txt

https://archive.org/download/2011_04_02_enron_email_dataset

https://download.netresec.com/pcap/maccdc-2012/

https://download.netresec.com/pcap/smia-2011/

https://download.netresec.com/pcap/smia-2012/

https://drive.google.com/file/d/0B_IN6RzP69b2TkNrYVdOMnQ4LVE/view

https://ictf.cs.ucsb.edu/pages/the-2016-2017-ictf.html

https://ransomwaretracker.abuse.ch/feeds/csv/

https://www.ll.mit.edu//ideval/data/1999data.html

https://www.ll.mit.edu/ideval/data/1999/training/week1/index.html

https://www.uvic.ca/engineering/ece/isot/datasets/index.php#section0-0

https://zeustracker.abuse.ch/blocklist.php

https://zeustracker.abuse.ch/blocklist.php?download=baddomains

https://zeustracker.abuse.ch/blocklist.php?download=badips

http://www.gwern.net/DNM-archives

http://www.malwaredomainlist.com/forums/index.php?topic=3270.0

http://www.netresec.com/?page=PcapFiles

Some books that I found useful:

• Linux Command Line, 2nd Edition: https://nostarch.com/tlcl2 If you buy from No Starch Press

directly, it includes the DRM-free ebook.

• Linux in a Nutshell from O’Reilly https://www.amazon.com/Linux-Nutshell-Desktop-Quick-

Reference/dp/0596154488/

• The Tao of Network Security Monitoring https://www.amazon.com/Tao-Network-Security-

Monitoring-Intrusion/dp/0321246772

• The Practice of Network Security Monitoring: https://nostarch.com/nsm If you buy from No

Starch Press directly, it includes the DRM-free ebook.

• Applied Network Security Monitoring by Chris Sanders & Jason Smith.

https://www.amazon.com/Applied-Network-Security-Monitoring-Collection/dp/0124172083/

Keep an eye on Humble Bundle. They periodically do bundles from O’Reilly, No Starch Press, and

other great publishers.

62

1/12/2022

https://github.com/markjx Save Time with Modern Search Techniques 63

Questions?

markjx@gmail.com

@markjx01 https://markjx.blogspot.com/

Slide Deck & Scripts:

https://github.com/markjx/search2018/

Books that may be useful:

Linux Command Line, 2nd Edition: https://nostarch.com/tlcl2 If you buy from No Starch Press

directly, it includes the DRM-free ebook. Support the author at http://linuxcommand.org/tlcl.php

Linux in a Nutshell from O’Reilly https://www.amazon.com/Linux-Nutshell-Desktop-Quick-

Reference/dp/0596154488/

The Tao of Network Security Monitoring https://www.amazon.com/Tao-Network-Security-

Monitoring-Intrusion/dp/0321246772

The Practice of Network Security Monitoring: https://nostarch.com/nsm If you buy from No Starch

Press directly, it includes the DRM-free ebook.

Applied Network Security Monitoring by Chris Sanders & Jason Smith.

https://www.amazon.com/Applied-Network-Security-Monitoring-Collection/dp/0124172083/

Keep an eye on Humble Bundle (https://www.humblebundle.com/). They periodically do bundles

from O’Reilly, No Starch Press, and other great publishers.

1/12/2022

63

https://github.com/markjx Save Time with Modern Search Techniques 64

Hardware Stopped Getting Faster

MHz stopped increasing in 2000. Core Count started

increasing in 2006.

For my work: AMD Threadripper & NVMe PCIe g4 (or 5!)

This works with

• Any multi-core CPU

• Any SSD

I’m Using: CPU: AMD 3970X “Threadripper”

NVMe solid state drives from Samsung (like the 980 Pro gen 4x4) as well as the Inland drives from

Micro Center (gen3 and gen4). Things like the ASUS Hyper M.2 X16 Gen 4 are helpful.

But really, these techniques work with: Any multi-core CPU & Any SSD

Stop thinking that VM’s are just as good as bare hardware. Stop thinking that you need “server

class” hardware.

The Pentium 4 (2000) was the last CPU where Intel tried to chase MHz. It was replaced by the Core

architecture (2006), itself highly based on the P6 architecture of the Pentium Pro (1995). That was

an excellent architecture, but as of 2018, the only thing people will remember about is that it was

Intel’s first CPU with the Speculative Execution Vulnerabilities known as Spectre & Meltdown.

Fastest MHz Offered:

Pentium 4 HT 3.8F: 3.80GHz / Nov 2004

Ryzen 9 5950X (16 core): 4.9GHz / Nov 2020

Intel i9-112900 (8P+8E core): 5.1GHz / Jan 2022

Intel i9-10980XE (18 core): 4.6GHz / Dec 2019

Threadripper 3970X (32 core): 4.5GHz / Nov 2019

What is Hyper-Threading? Or Simultaneous Multi-Threading?

• One execution core with multiple register sets

1/12/2022

64

• Two queues, two registers, one cashier.

• When someone goes “uh…”, the cashier pays attention the person in the other queue.

64

1/12/2022

https://github.com/markjx Save Time with Modern Search Techniques 65

Operating System

• Many Options!!!

• Linux VM’s or bare hardware

• Windows Subsystem for Linux

• Docker

• Test Yo’self!

• What’s important?

• Your skills / Institutional Support

• Cost / Performance

1/12/2022

65

https://github.com/markjx Save Time with Modern Search Techniques 66

7200rpm RAID vs. NVMe

7200rpm RAID

NVMe

The RAID I used is five 7200rpm 2TB drives in RAID 5. This is meant to be representative of an

Enterprise configuration.

1/12/2022

66

https://github.com/markjx Save Time with Modern Search Techniques 67

Compressed or Uncompressed?

Types of Compression

Compression vs. Decompression

What does your “off hours” usage look like?

Know your Data

Don’t be afraid to “transcompress”

Test, Test, Test

Most important thing to take away from this section: Small compression differences have HUGE

impacts. Test for your environment. Different data sets may want different compression schemes.

1/12/2022

67

https://github.com/markjx Save Time with Modern Search Techniques 68

Compression Test – CERT Insider r6.2

wc -l, grep -F -f (2320 lines)

Space wc -l Time grep -F -f Time

MB Savings real user+sys Savings real user+sys Savings

raid5 uncompressed 86054 0.00% 563.815 71.4251 0.00% 563.154 217.85 0.00%

nvme uncompressed 86054 0.00% 43.672 28.362 92.25% 133.874 112.378 76.23%

nvme split 86054 0.00% 67.590 41.942 88.01% 70.403 250.432 87.50%

nvme gzip 35375 58.89% 29.763 881.843 94.72% 37.356 1087.088 93.37%

nvme bz2 19507 77.33% 353.441 10994.801 37.31% 425.696 12579.695 24.41%

nvme lz4 53965 37.29% 44.730 411.786 92.07% 46.242 316.816 91.79%

nvme xz 4519 94.75% 21.332 637.354 96.22% 27.974 853.265 95.03%

1/12/2022

68

https://github.com/markjx Save Time with Modern Search Techniques 69

Compression – Winner!

• Winner: xz

• fast decompression & very little space on disk

• Compared to uncompressed: 95% space & speed

• Compared to gzip: 77% space & 27% speed

• Downside? xz compression is much slower.

• Your Mileage May Vary

• Other data sets work better with other algorithms

1/12/2022

69

https://github.com/markjx Save Time with Modern Search Techniques 70

Transcompression

I don’t know if that’s a word, but I’m using it.

It is trivial to convert from one compression type to another.

Something like this:

That’s 6 and a half minutes to move 305GB of data from

lz4 to gz

The 6m39s time was on my Threadripper 1950X.

On my 3970X, I was able to convert from lz4 to xz in 29m.

1/12/2022

70

https://github.com/markjx Save Time with Modern Search Techniques 72

parallel & Pictures

Resize 5,558 jpg’s from 20MP -> 2.6MP
[markj@tr01 all]$ time make-picasa.sh ./

real 36m1.123s

user 226m15.221s

sys 142m12.921s

And... in parallel
$ mv ../picasa ../picasa.serial ; mkdir ../picasa ; time ls | \

parallel make-picasa1

real 9m50.470s

user 287m49.904s

sys 20m52.173s

The dataset is 5558 jpg files from my vacation to Montreal in Summer 2017 which total to about

30GB of data.

The script converts the ~20MP files from my Canon 7D Mark II to ~2.6MP files with higher

compression rates suitable for sharing on social media.

[markj@tr01 all]$ time make-picasa.sh ./

real 36m1.123s

user 226m15.221s

sys 142m12.921s

And... in parallel

[markj@tr01 all]$ mv ../picasa ../picasa.serial ; mkdir ../picasa ; time ls | parallel make-picasa1

real 9m50.470s

user 287m49.904s

sys 20m52.173s

1/12/2022

72

https://github.com/markjx Save Time with Modern Search Techniques 73

parallel & ClamAV

Scan 80,168 files, taking 39,292MB of disk space
real 177m58.320s

user 174m36.915s

sys 1m45.777s

And... in parallel
$ time ls -S | shuf | xargs -L 600 -P 32 clamscan > parallel

real 13m52.956s

user 397m23.623s

sys 4m29.457s

Approximately 80,168 files taking up 39,292MB of disk space. Files came from

https://archive.org/download/virusshare_malware_collection_000 They are basically all malicious.

Going through sequentially:
[markj@tr01 virusshare]$ time clamscan -l serial -r .

----------- SCAN SUMMARY -----------

Known viruses: 6470742

Engine version: 0.99.4

Scanned directories: 20

Scanned files: 80148

Infected files: 46706

Data scanned: 59250.00 MB

Data read: 39007.12 MB (ratio 1.52:1)

Time: 10678.307 sec (177 m 58 s)

real 177m58.320s

user 174m36.915s

sys 1m45.777s

And, in parallel...

$ time ls -S | shuf | xargs -L 600 -P 32 clamscan > parallel

real 13m52.956s

user 397m23.623s

sys 4m29.457s

1/12/2022

73

https://github.com/markjx Save Time with Modern Search Techniques 74

parallel & ClamAV 2

An early run before I optimized the CPU usage

Another example of the importance of balancing CPU

usage

See notes below

$ time find . -type f | xargs -L 400 -P 32 clamscan | tee parallel

real 28m17.375s

user 370m27.567s

sys 4m56.347s

the job finished at about 21:21. Here's what sar recorded in that time:
08:54:27 PM all 47.96 0.00 1.58 0.05 0.00 50.42

08:56:17 PM all 97.37 0.00 2.48 0.04 0.00 0.12

08:58:27 PM all 98.10 0.00 1.84 0.02 0.00 0.05

09:00:25 PM all 97.81 0.00 2.10 0.02 0.00 0.06

09:02:12 PM all 97.25 0.00 2.61 0.03 0.00 0.10

09:04:17 PM all 81.68 0.00 1.77 0.04 0.00 16.51

09:06:27 PM all 13.06 0.01 0.31 0.05 0.00 86.57

09:08:17 PM all 9.19 0.00 0.15 0.01 0.00 90.65

09:10:27 PM all 6.16 0.00 0.10 0.01 0.00 93.73

09:12:27 PM all 6.16 0.01 0.11 0.02 0.00 93.70

09:14:17 PM all 6.17 0.00 0.10 0.04 0.00 93.68

09:16:27 PM all 6.17 0.00 0.11 0.01 0.00 93.70

09:18:27 PM all 6.17 0.00 0.10 0.00 0.00 93.72

09:20:17 PM all 6.18 0.00 0.12 0.01 0.00 93.69

09:22:09 PM all 3.59 0.00 0.53 0.07 0.00 95.81

Average: all 3.43 0.13 1.00 0.05 0.00 95.40

The box worked hard for about 10 minutes. Then was only running a few threads for 12

minutes.

1/12/2022

74

https://github.com/markjx Save Time with Modern Search Techniques 75

GPU’s?

nVidia, AMD Radeon, Intel Xe are all processing units that

specialize in SIMD. Can that help?

Maybe, but probably not.

I’m a scripter. Not a developer. Don’t wanna. Feel free!

Overhead of copying to/from GPU’s

People have looked into this, but not many results

In early 2020, I did some research on this. There are some academic projects done starting in 2012

about porting grep to GPU’s.

• There is some speedup for matching multiple patterns to one data stream. This is the use case of

checking a URL history log against a Top 1 million list

• There’s probably not much speedup for looking for one site in a URL history log.

I’ve also talked to people at Sourcefire (prior to the Cisco acquisition) about this. They found that

the overhead of moving packets to a co-processor is so much slower than intra-CPU that it wasn’t

worth it.

If I had a Computer Science Intern, I’d give them a fast CPU and a few fast GPU’s and see what

they could come up with. But, I’m doubtful.

SIMD: Single Instruction (that operates on) Multiple Data (objects). One type of hardware

parallelism.

1/12/2022

75

