
Finding the Needle in the
Hardware Haystack

Identifying and Exploiting Hardware Vulnerabilities

via the HRES Process

Who are we?
Timothy Wright - Penetration Testing Team Lead, American Electric Power

Currently focusing on penetration testing, threat emulation and hardware reverse

engineering

19 Years of security experience with a focus on offensive security

Member of independent security research team Nullbyte

@redteam_hacker

Who are we?
Stephen Halwes - Cyber Researcher, PreTalen Ltd.

Currently focusing on embedded hardware and software reverse engineering

6 Years experience with a focus on reverse engineering and IT security

Member of independent security research team Nullbyte

@genonullfree

What is the focus of today’s talk?
Today we are talking about why reverse engineering of embedded hardware systems

are an important part of a security program.

Discussion regarding current state of hardware / embedded RE security testing

We are discussing why your organization should invest time and resources into

performing this work.

We are presenting a standard for review and support by the security community.

We are pushing ourselves to learn more about this area since we are both very

passionate about this work and still learning.

A Little Background

Is embedded device security a new problem?
No, but now the risk is increasing with the staggering number of new embedded

devices being deployed in organizations.

Proliferation of new powerful microcontrollers are allowing for expanded

functionality with an even smaller device footprint.

“Shadow IT” or BYOD is expanding and making it easy for our users to do the

things they want without thinking about or consulting with security.

Everything is now connecting to the Internet and hitting the web for content,

updates, or pushing and pulling data.

Problem - No Standards for Embedded RE Testing
Has become a new service offering with many security consulting companies who

also perform penetration testing services.

Work performed currently does not follow a defined standard for hardware reverse

engineering.

This testing has become new “secret sauce” many companies are offering to clients.

Can be very difficult to scope this type of assessment if you have never requested

this type of service before. You rely on the vendor to tell you what you need done.

Network Penetration Tests vs Hardware Security Testing

Research on Hardware Security
Xipiter has an excellent website and blog. Thanks for all you do guys!

We are not the first to talk about hardware and embedded system security, nor will we

be the the last:

Deral Heiland - printers and Praeda as well as SNMP

Dave Kennedy - Home automation talk Defcon 19

Joe Grand - Can you really trust hardware Blackhat 2005

Travis Goodspeed - Journey to the Center of the HP28 Defcon 16

Kevin Finisterre - Shelling out (getting root)... Derbycon 5

Stephen A. Ridley - Hardware Attacks… 30C3

http://www.irongeek.com/i.php?page=videos/oisf2014/praeda-to-praedasploit-the-embedded-device-data-harvesting-tool-for-the-masses-deral-heiland-percent_x
https://www.youtube.com/watch?v=OakrNqtHSjs
http://www.irongeek.com/i.php?page=videos/oisf2014/praeda-to-praedasploit-the-embedded-device-data-harvesting-tool-for-the-masses-deral-heiland-percent_x
http://dangerousprototypes.com/2011/11/04/defcon-19-hacking-over-power-lines/
http://www.blackhat.com/presentations/bh-europe-05/BH_EU_05-Grand.pdf
http://www.blackhat.com/presentations/bh-europe-05/BH_EU_05-Grand.pdf
https://www.youtube.com/watch?v=TJzgvKVjJBs
https://www.youtube.com/watch?v=TJzgvKVjJBs
https://www.youtube.com/watch?v=IqCz-V6WMVg
https://www.youtube.com/watch?v=IqCz-V6WMVg
https://www.youtube.com/watch?v=2fYPtByBY-s
https://www.youtube.com/watch?v=2fYPtByBY-s

SCADA Disclosures - Trend analysis

What is the risk to your organization?
When we look at the hardware security problem we tend to associate several risks to

an organization if these systems are compromised. They include:

1. Data exfiltration - Loss of IP via communication protocols enabled on device.

2. Access to the network - Bridgehead on the network; network perimeter compromised.

3. Physical damage - Legacy systems that are more sensitive damaged either intentionally or

unintentionally by attack.

4. Modification - System or data tampered with and system altered

5. Theft of Service - Stealing services or unlocking functionality that would normally require

a charge.

Common embedded vulnerabilities
When we look at hardware security we see a common theme in many of these risks

that we feel hardware reverse engineering can help you identify. These include:

1. Stack overflow, code execution and/or DoS vulnerabilities

2. Undocumented backdoors in the system

3. Physical compromise via console or debug interface (JTAG, UART)

4. Wireless protocol compromise

5. Weak cryptography

6. Weak firmware management processes (firmware updates)

7. Web interface attacks

Stack Overflow, Code Execution, DoS Vulnerabilities
Risk:

Many embedded devices are running on a UNIX or Linux based operating system

and have applications running code that was developed in C and in some cases

C++.

These applications can be susceptible to buffer overflows or DoS attacks if not

properly developed.

If exploited by an attacker they could execute code remotely on the device and

possibly gain some type of remote connectivity or control of the system. Or crash

the system and cause damage to the device.

Undocumented Backdoors in System
Risk:

The core OS can have user accounts and default passwords still enabled,

undocumented commands and debug functionality that have been left active and

can be used to login or for remote command execution.

If compromised the attacker could gain remote access to the device and/or network,

execute system commands and possibly pivot onto other machines.

Physical Compromise via Console or Debug Port
Risk:

● Debug test points often leave root or full hardware access available to anyone

with physical access to the device, allowing anyone to compromise the device’s

integrity.

● Supply chain attacks can happen if the right people are motivated or

compromised.

Wireless Protocol Compromise
Risk:

● Security flaw in improperly designed or implemented wireless protocols could

lead to a total compromise of device.

● Wireless compromise could be worse than wired compromise, because it can be

more difficult to locate or disconnect the perpetrator or device.

Weak Cryptography
Risk:

Default SSH/SSL keys embedded into firmware or each device could allow someone

to remotely connect or sniff the network traffic.

Advertized device cryptography is not always accurate, or implemented properly.

Improper security implementation could allow automatic connection negotiation to

fall back to an insecure cipher suite.

Weak Firmware Management Process
Risk:

Unprotected interfaces (web admin, USB, console etc.) can allow attacker to gain

access to update functions of device.

Updating the OS or firmware seems to never be done in organizations.

Attacker can upload patched firmware of the device.

Added functionality could allow for remote access, communications monitoring,

data tampering or even full system destruction/DoS as was seen in the

BlackEnergy malware.

Web Interface Attacks
Risk:

An attacker can target the web management interface of the device to gain access to

functionality within the device without authenticating.

The attacker could also target any embedded databases or files in order to extract

sensitive data from the device.

Since many of these embedded devices are connected to the Internet directly,

finding the web management interface is not difficult using Google or Shodan.

Risk Examples

Seagate NAS hardcoded root password

The Seagate NAS had an undocumented root account with the password set to “root”.

This account was discovered when a security researcher reverse engineered the device

firmware.

An attacker could enable the telnet service remotely on the device and then connect

with the root credentials and have full control of the device.

The attacker could also use the device as a pivot onto the target network or access all

data stored on the device.

More info: CVE-2015-2874

TheMoon worm

Bypassed admin authentication on Linksys routers without actually knowing the

credentials by targeting several .cgi files directly.

Once authenticated, the malware started to flood the network with TCP 80 and 8080

outbound traffic. This results in degraded Internet performance.

An RCE Exploit has been released to ExploitDB which uploads a binary to the device

and binds a shell to a TCP port.

Bluetooth controlled Toilet. What could
go wrong?

Bluetooth exploit allowed hackers to
flush, activate the built-in bidet
function.

Trustwave found that the toilet had a
hard coded “0000” pin for bluetooth.
So as long as you can talk to the
device you can connect.

No worries. Bluetooth is short range!

Not so short range...

BlackEnergy

This malware left 225,000 people in the dark in the Ukraine.

Utilized a KillDisk component that would render targeted computers unbootable.

Targeted two processes: Komut.exe (“command” in Turkish) and sec_services.exe. The

second process may belong to software called ELTIMA Serial to Ethernet Connector

or to ASEM Ubiquity, a platform commonly used in Industrial Control Systems.

This resulted in the utility having to move to manual operations in order to restore

power to customers.

The attackers used the control systems and the software via direct interaction to

cause the outage.

The risk justifies the work
These are just a few examples of systems that have been found to be lacking in

security or have been targeted in attacks.

We believe that the risk justify the work.

Based on recent trends these risks will only continue to increase unless we work

with vendors to help improve product security.

Threat actors are performing this research. We (security) need to be more proactive

in our security testing.

We need more than a simple risk assessment or trusting the vendor’s that the device

was designed with security in-mind and tested properly.

How do we do the testing?

Defining the testing Process
We feel that the community needs to define a standard on how to properly RE

hardware and embedded devices.

Having properly defined testing processes will allow for measurable and repeatable

testing to be performed.

Providing more than just a vulnerability scan of a target device.

So based on all of these reasons we are proposing….

Hardware Reverse Engineering Standard (HRES)

The HRES is based on the Penetration Testing Execution Standard (PTES) format, but

modified and augmented to concentrate on hardware testing.

The HRES is Open Sourced, licensed GFDL 1.2, as is the PTES.

We are calling for collaboration with the hardware hacking community to help create

a standard for the general hardware reverse engineering and testing process.

Our aim is to make this a complementary fork of the PTES.

The HRES Process

HRES maps to the 7 PTES main sections

PTES - Main Section Outline

1. Pre-engagement Interactions

2. Intelligence Gathering

3. Threat Modeling

4. Vulnerability Analysis

5. Exploitation

6. Post Exploitation

7. Reporting

HRES - Main Section Outline

1. Pre-engagement Interactions

2. Intelligence Gathering

3. Threat Modeling

4. Vulnerability Analysis

5. Exploitation

6. Post Exploitation

7. Reporting

● We felt the HRES can map to the 7 main sections of the PTES and yet it deserves a stand alone process.

● Not all hardware security assessments are considered penetration tests. However the findings from these

assessment could enable your penetration testing team during an engagement to gain further access.

● The PTES does an outstanding job in providing us with the framework we need to perform testing. We

just need to define each testing section.

HRES process outline

Phase 0: Safety First!

Please keep safety in mind when doing hardware work!

You can get seriously hurt if you mess with powered systems.

Always unplug your devices when disassembling.

Always make sure your device is grounded properly.

When in doubt ask for help.

Phase 1: Pre-Engagement Interactions
First ensure that your legal department has reviewed your testing plan and given

approval for testing of devices.

Establish Rules of Engagement and scope:

1. Require a minimum of 2 sets of devices: One for constructive testing and the other for destructive testing

(soldering and desoldering on boards etc.).

2. Develop testing goals: What are you looking to prove in the engagement? Is it just DoS or do you want to

see if the attacker can gain remote access to a substation from the PLC?

3. Setup testing lab / bench: Time to get your work space setup and ready for testing.

4. Clear lines of communication: Who do you call if you brick a device and need to have it reset or have

another shipped to your testing location?

5. Request debugging or programming tools: Some devices have specialized programming cables or devices.

Requesting a set for testing if you do not have a set available.

United States Code, Title 17, Section 906
US law does allow for hardware RE as it relates to a security analysis of a device.

According to US law :

“It is not an infringement… for a person to reproduce the mask work solely for the

purposes of teaching, analyzing, or evaluating the concepts or techniques… or the

circuitry, logic flow, or organization of components used in the mask work.”

We recommend that you have your internal legal team review this but that is should

be included in the HRES so that it can be referenced by corporations as their right to

test devices and systems for risks and vulnerabilities.

Phase 2: Intelligence Gathering
During this phase we will be gathering data regarding our device, the chips and any

firmware on device. We will also need to document how the device looks prior to

disassembly.

• Spec sheet research and schematic download.

• Photograph device prior to, and during, disassembly

• Identify chips on boards (QFP, BGA,TSOP,DIP,SOIC,PDIP)

• Utilize a multimeter to identify power, ground and data pins.

• Identify test interfaces on boards (I2C, JTAG, UART, etc.)

• Identify wireless chips on board (802.11x, bluetooth, zigbee, etc.)

• Identify any anti-tamper mechanisms on the device (lock bits, glitch detection,

self destruction etc.),

Phase 3: Threat Modeling Process
This phase will help you narrow your testing focus by identifying potential targets.

This should include business process reviews, threat intel analysis, and threat

capability analysis.

Which components pose greatest risks of being compromised?

• Customer billing data sent unencrypted over mesh network

• Gas meter at customer site with RF interface

• Remote access into support system via substation wireless AP

Using tools like a CARVER We can now start to prioritize our testing efforts based on

our risks

CARVER Risk Evaluation Method
CARVER is a system used to assess targets to see which one needs to be addressed first

based on a risk score.

Rank 1 (low risk) to 10 (high risk)

Criticality - Target value

Accessibility - How easy to get in and out

Recuperability - Time to recover

Vulnerability - Chance of successful attack

Effect - Positive or negative effects

Recognizability - How easy to recognize target

http://fas.org/irp/doddir/army/fm34-36/appd.htm

http://fas.org/irp/doddir/army/fm34-36/appd.htm
http://fas.org/irp/doddir/army/fm34-36/appd.htm
http://fas.org/irp/doddir/army/fm34-36/appd.htm

Phase 4: Vulnerability Assessment
During this phase we will be testing both the hardware and software for potential

vulnerabilities. This can include:

• Solder jumpers on board (as needed)

• Extract data from flash chips (SPI, EEPROM, etc.)

• Test access level / availability (I2C, JTAG, UART, etc.)

• Sniff data from buses with logic analyzer

• Record and process wireless data as needed

• Scan for network services to review

• Software reverse engineer binaries, data from flash chips, configuration and

backup files

Shikra - Connecting into your target
Shikra is a USB device that supports

many protocols out of the box

(UART, JTAG, SPI, etc.)

It’s based on the FTDI FT232H chip

Using tools like minicom you can use

Shikra to connect into various

interfaces found in hardware.

Supports OS X and Linux natively.

http://www.xipiter.com/musings/using-the-shikra-to-attack-embedded-systems-getting-started

Building your own RE system on a Raspberry Pi
By leveraging a Raspberry Pi we can build a

very nice testing space on a very small

footprint.

Supports UART, I2C and SPI on the board.

With Linux on the device it makes doing

firmware analysis pretty easy once you have it

downloaded.

Phase 5: Exploitation
Physical Exploitation, Memory Exploitation, Wireless Exploitation, Management

System Exploitation, and Destructive Exploitation will all be avenues of attack.

Develop Proof-of-Concept exploits against discovered vulnerabilities to demonstrate

code execution and process redirection.

Bypass restrictions (firewall [Data Diodes] or IDS, access permissions, etc.) to show

that network controls can be bypassed.

If push comes to shove, assess creative exploit methods (social engineering) to

demonstrate the insider threat.

Example: Termineter Framework
Python framework which provides security

platform to test smart meters.

Similar to metasploit but just focuses on

meter testing and exploitation.

Implements the C1218 and C1219 protocols

for communication over optical interface.

Communicates with meters via a connection

using ANSI type-2 optical probe with a

serial interface.

Phase 6: Post-Exploitation
During this phase we will now be showing how exploiting the device could lead to

further system compromise. Other areas of interest include data exfiltration, network

pivoting, destruction of device, DoS.

Some things to think about for this phase of testing:

• Code developed should enable persistent access to device

• Code developed should enable privilege escalation on device

• Code developed should enable data exfiltration from target network

• If allowed, develop code that could damage or destroy device

Phase 7: Testing Report
“Responsible Disclosure” should be performed for any 0-day discovered in vendor

systems.

Lanes of communication should already be open so this should not be difficult at this

stage of the game.

Two reports should be developed:

Executive Report: for higher-level summary for senior management. This should be

concise to the point. Keep it under a page if possible and no hex or assembly.

Technical Report: full reproduction of RE and exploitation scenario. Should have

details on each finding and the risk associated with the results.

DREAD Vulnerability Modeling
As we develop the findings from the testing we will need to risk rank what we have

discovered. We can use risk modeling tools to help facilitate this process.

There are many risk ranking frameworks online but for this talk we are discussing

DREAD and will walk through an example.

Generally uses 5 tiers for risk (Critical, High, Medium, Low, Informational). These are

just recommendations. If you have already defined risk tiers for your organization you

can just apply them to the model.

DREAD risk model of default root account password

HRES – A Repeatable Measurable Process
Based on what we have outlined and tested we feel this process is repeatable and

measurable.

Can provide our organizations a way to test hardware and embedded systems and

ensure each assessment is following a documented standard.

Based on the testing performed we felt that the HRES should be a stand alone process

and not just extra steps included in the PTES. But it maps well to the 7 main sections

of PTES.

We are hoping that the community can come together on this and help us further

define a hardware and embedded security testing strategy.

Closing Thoughts and Next Steps

Where do we go from here?
1. Risks are increasing as we add more embedded devices and systems into our

organizations.

2. Our security teams should be testing this hardware to identify the vulnerabilities

within these systems and to help manage or reduce the risk.

3. We propose the development of the HRES standard to help define proper

hardware reverse engineering testing so that it is a repeatable, measurable testing

process.

4. We are at present setting up the website, a wiki, and getting each section of the

HRES process outlined. We are also working on expanding the mind map.

5. If you would like to help please go to http://hre-standard.com and start supporting

and contributing.

http://hre-standard.com

Thank you for your time!

Contact us:

Timothy Wright - @redteam_hacker

Stephen Halwes - @genonullfree

http://www.nu11byte.com

Questions?

Build up your testing lab

Cheap Hardware to Reverse
You can pick up all kinds of old hardware at your local thrift store for next to nothing.

I have found Linksys routers, DSL modems and various devices with ethernet

interfaces very cheap.

It is also nice to reverse a target and not feel bad when you let the smoke out of a

device that only cost you 2 dollars.

You can also find really cheap shoes and socks.

Tool time

So we have spent some time discussing the risks, the testing processes involved so now

it’s time to talk software and hardware tools.

In order to perform this testing you will need to invest into a lab. This could be a low

end portable solution all the way up to a full hardware RE lab space. If you have a

awesome manager and a corporate card then charge it up!

But if you just want to get started on the cheaper end then we have a few solutions for

you.

Physical Tools
When we talk “Physical Tools” we are referring to the tools your grand dad used to

build radios or repair the VCR. These tools include:

Soldering Iron with fine tip

Multimeter

Screwdriver set with security bits

Hot Air Gun / Hair Dryer

Needle nose pliers and wire cutters

Dental picks

A decent supply of caffeine if working late.

Electronic Tools

Shikra / Bus Pirate

JTAGULATOR

Saleae

Picoscope / DSO Nano v3

USB RS232 breakout board

Raspberry Pi 2 / 3

DualComm DCGS-2005L

RTL-SDR 2832 / HackRF / BladeRF

Pomona 5250

When we say “Electric tools” we are referring to the devices we use to measure or

connect to the hardware device. These include:

Software Tools

IDA Pro / Ollydbg / Immunity

Hexdump / Objdump

Minicom

HT Editor / radare2

Flashrom

GNURadio

Zigbee “Killerbee” framework for Zigbee wireless assessment

This includes all of the software applications we could use as part of the assessment.

These include:

Promotion of stuff we love

Shikra
Communicates over UART, JTAG, I2C, SPI, GPIO

Fast, very stable, works great with flashrom for dumping flash

chips

Supported on Linux and Mac OS X

Pomona 5250
Clips directly onto an 8-pin SOIC

Quick, solderless testing

Raspberry Pi
Extremely versatile

Can communicate over I2C, SPI, UART via GPIO pins

RTL-SDR
Amazing value for entry level SDR

With GNURadio you can decode many protocols right out of the box

HT Editor
HT is a file editor, viewer and analyzer for executables. The goal of this tool was to

combine the low-level functionality of a debugger and the usability of IDE’s.

It is distributed under GPL on http://hte.sourceforge.net

http://hte.sourceforge.net

Radare2
Disassemble and assemble for many different

architectures (ARM, x86 & x64, CSR).

Debug with local native and remote debuggers

(gdb, rap, windbg, webui, r2pipe)

Supports scripting in Python, Javascript, Go and

more.

Incredibly powerful command line decompiler

Sharp TUI and data visualizer

Portable laboratories, anyone?

Hardware testing kits
So the following tool kits were designed to help you get started doing this work and do

so without breaking the bank.

The kits have also been designed to allow a team to take the kit on the road or move

around an organization to test systems that may be only found in one location or

department.

However, you can build a workbench of tools to allow you to do even more in-depth

testing. The workbench style-testing setups will be outlined in the HRES wiki online.

Small Testing Kit
1. Raspberry Pi 2 / 3

a. Flashrom

b. Radare2

c. HT Editor

d. Minicom

2. Shikra

3. Pomona 5250

4. Small screwdriver toolkit

5. Multimeter

Total: ~$188USD

Large Testing Kit
1. Laptop (spare, running Linux)

a. Flashrom

b. Radare2

c. HT Editor

d. Minicom

e. Saleae Logic

f. GNURadio

2. Shikra

3. Saleae

4. Pomona 5250

Total ~$465USD

5. RTL-SDR

6. DSO Nano v3

7. Small screwdriver toolkit

8. Multimeter

The End. For real this time...

