i B~

j:\w

\We're Watching You:

An analysis of IP cameras
through their firmware

Charles Monett
OISF - November 2016

4 N =
el sl "e_—e L W e ¥




Please use this knowledge only for good and for your own devices.

Disclaimers:
« All trademarks/etc. used in this presentation are property of their respective owners.

« All testing performed in a controlled environment.



Outline

Introduction/Key Points/Takeaways

Example 1: Conference Camera + demos

Example 2: Security Camera + demos

Some good news

Usage/Research

Wrap-up/G8A



Introduction

 Did product research for IP cameras
» \Was looking at more upmarket cameras (above Foscam)
» Part of it involved looking at firmware updates

» \Was expecting a bit more resistance to modification

 Not just tearing apart firmware
 Putting the knowledge to good use



Key Points & Takeaways

 Key points
» Network appliance design is hard to get right

* Sometimes we can use it for our advantage

 Takeaways
* Introduction to tools/methods/processes
 Relevant applications that highlight security issues

A greater understanding of |P cameras



Example 1: Conference Camera

Vaddio ClearVIEW HD-USB Slotcard
* Early-generation HD conference camera

« Runs Angstrém distribution of Linux

» Powered by Tl DaVinci DM368 platform
* (ARMS26EJ-S CPU)

* Provides HTTP/telnet/network streaming services




|lssues:

* Network:

» (Cleartext administration interfaces (HTTP/telnet), no alternatives

* Firmware:
» (Can be modified (in entirety) while running
» Firmware obfuscation is minimal (byte-reversal)

» (an be updated with modified firmware



The update process

At System part of Administration menu:

User uploads firmware

Package Is decoded and unpacked to scratch space.

Bootloader update script is executed

System update script is executed

System verifies functionality, and:
* |f good, commits update.

* |f not good, reverts to existing firmware.



The firmware package

Relatively trivial unpacking. No binwalk needed.

A byte-reversed, base64 encoded zipfile containing:

* Bootloader

Updated environment

Support scripts

Python Interpreter

Other goodies



Extracting & re-packing firmware

* Extracting:
» Undo byte-reversal
 Uudecode file

 Extract resulting zip into a directory
 Re-packing:
* (Create zip archive

« Uuencode file

» Redo byte-reversal

If all goes well, it will accept your changes.



emonstration



Example 2: Security Camera

Canon VB-H41
e Pan/Tilt/Zoom IP camera

 Proprietary OS (Linux-based)

» Powered by DIGIC DV Il Platform
* (ARMVBTEJ-based CPU)

5D slot for event recording



|lssues:

* Network:

* None (if running as intended)

* Firmware:
 Default administrative account Is root
* Running software can be easily updated
 Arbitrary tasks can be invoked with cron job

 Easily unpacked, no apparent signature check in bootloader (?)

 Enough space available to run Debian in a chroot.
» Remember that SD card slot?

 Applications only limited by binutils



The firmware package

Courtesy of binwalk, we get the following:

* 128 bytes: Header (for this series)

* Remainder is a tarred CPIO archive containing:

Canon DryOS Bootloader (boot.bin)

Data (cmr.dat)

SquashFS filesystem (mtd4fs, ro) — core 0S

JFFS2 ‘appfs’ filesystem (main, mtdSfs, rw) — external apps
Linux Kernel (zlImage)

MD5 sum of above items



Extracting firmware

* Extracting:
* Remove header
» Extract gunzip archive
» Extract resulting cpio archive in a directory

» Extract other filesystems
» SquashFS (core 0S):
* unsquashfs mtd4fs.squashfs
- JFFSE:
» Extract/unpack to a loopback device

« Use Jefferson (jffs2 extraction tool)



emonstration



Good News

VB-H41:

 SSL is available (which raises the bar)

» Some parts of firmware resist modification.

» Some sanitization is performed (such as system logs)
HD-USB Slotcard:

 Obtaining root is not straightforward

 QOutbound network traffic is restricted by default

 Subsequent generation products more protected from altered firmware



Usage

* For good/neutral:
 Fix features (e.g. stepped Pan/Tilt)
 Extend functionality to cross-platform clients

 Ansible integration (depending on security model)

* For [not goodl:

* Unwanted surveillance
 Redirect/Copy streams to external sources
 Jumping-off point to other devices

 (Other accounts (crafted alert e-mail)?
» Compromise other devices with the camera



Further research

 (Obtain access without having to look over the wire

Extract keys from other devices (via JTAG, TTL serial, etc.)

Other firmware (Canon, AXIS, others)

Addressing issues with Canon firmware:
* Properly extracting squashfs

 Building firmware package (squashfs/jffs2-appfs)

NFS volume mounting off a camera (Tl SDK kernel modules, perhaps?)

» Stream straight to networked storage.



Questions?



Resources:

» Angstrom Distribution: http://www.angstrom-distribution.org/

Binwalk: http://www.binwalk.ora/

SquashFS:
e http://tldp.org/HOWTO/SquashFS-HOWTO/mksgoverview.html

JFFS2 extraction:
* https://github.com/sviehb/|efferson

o http://linux-7110.sourceforge.net/howtos/netbook new/x1125.htm

Multistrap: https://wiki.debian.org/Multistrap
TI DM365/368 SDK: http://www.ti.com/tool/linuxdvsdk-dm36x

Unpacking scripts: http://github.com/cm-code/firmware-scripts


http://www.angstrom-distribution.org/
http://www.binwalk.org/
http://tldp.org/HOWTO/SquashFS-HOWTO/mksqoverview.html
https://github.com/sviehb/jefferson
http://linux-7110.sourceforge.net/howtos/netbook_new/x1125.htm
https://wiki.debian.org/Multistrap
http://www.ti.com/tool/linuxdvsdk-dm36x
http://github.com/cm-code/firmware-scripts

Thank you.



