
Order of Volatilty in Modern 

Smartphone Forensics
SANS DFIR SUMMIT, 22 JULY 2021

MATTIA EPIFANI



WHO AM I

• I live and work in Italy

• Master’s Degree in IT in 2002 @ UNIGE

• Founder and CEO @ REALITY NET 

• Digital Forensics Analyst

• Contract professor in Digital Forensics @ UNIGE

• SANS Institute Certified Instructor FOR585/FOR500

• Researcher at IGSG – CNR (Italian National Council of 

Research)



ORDER OF VOLATILTY
https://datatracker.ietf.org/doc/html/rfc3227#section-2.1

• RFC 3227 – February 2002

• When collecting evidence you should proceed from the 

volatile to the less volatile

• Here is an example order of volatility for a typical system.
• registers, cache

• routing table, arp cache, process table, kernel statistics, memory

• temporary file systems

• disk

• remote logging and monitoring data that is relevant to the 

system in question

• physical configuration, network topology

• archival media



ORDER OF VOLATILTY ON MOBILE DEVICES

• Key and general questions

• Is the device turned on or off?

• If it’s turned on, is it locked or unlocked?

• If it’s turned on and locked, can you access (code 

or biometric or other)?



TURNED OFF DEVICES

• Do you know the exact model?

• Is there any method that can be used to create a physical 

image (typically on FDE devices) or a full file system 

(typically on FBE devices)?

• Is this method working at a low-level, so that it doesn’t 

need to boot the OS?

• Examples:
• Checkm8 on iOS devices

• Bootloader-based acquisition on Android devices

• EDL mode on Android devices with Qualcomm chipsets

• Qualcomm/MTK Live 



WHAT’S THE CORRECT ORDER?

• It depends! ☺

• If you can create a physical/full file system without booting 

the OS and you trust the method, go for it

• But if you need to:

• turn on the device (or the device is turned on)

• interact with it (i.e. activate USB debugging)

• pair it with your forensic workstation

• In this case, you should approach in a way that acquires 

the data from the most volatile to the less volatile



ANDROID DEVICES

• When no solution is available to create a physical/full file 

system image, we typically rely on:

• Agent installation

• Android agent to extract data from content providers and 

screenshots

• Backup features

• Native (ADB)

• Vendor based (Huawei HiSuite, Samsung SmartSwitch, LG)

• Application downgrade

• Can we get more?

• What’s the correct order?



ADB
https://developer.android.com/studio/command-line/adb

• Android Debug Bridge (adb) is a versatile command-line tool 

that lets you communicate with a device

• To use adb with a device connected over USB, you must 

enable USB debugging in the device system settings, under 

Developer options

• On Android 4.2 and higher, the Developer options screen is 

hidden by default. To make it visible, go to Settings > About 

phone and tap Build number seven times. Return to the 

previous screen to find Developer options at the bottom

• On some devices, the Developer options screen might be 

located or named differently.



ADB
https://developer.android.com/studio/releases/platform-tools



ADB SHELL
https://developer.android.com/studio/command-line/adb



COMMAND TYPES

• Getprop

• Linux

• Dumpsys

• Package Manager

• Backup

• Pull

• Partial file system

• APKs



GETPROP
https://source.android.com/devices/architecture/configuration/ad

d-system-properties#shell-commands

• The getprop command can be used to read device properties 



Getprop

• getprop ro.product.model Device model

• getprop ro.product.manufacturer Device manufacturer

• getprop ro.serialno Device serial number

• getprop ro.build.fingerprint Android fingerprint

• getprop ro.build.version.release Android version

• getprop ro.build.date Build date

• getprop ro.build.id Build ID

• getprop ro.boot.bootloader Bootloader info

• getprop ro.build.version.security_patch Security Patch

• getprop persist.sys.timezone Timezone



Getprop

• getprop ro.product.device Product device

• getprop ro.product.name Product name

• getprop ro.product.code Product code

• getprop ro.chipname Chipname

• getprop ril.serialnumber Device Serial Number

• getprop gsm.version.baseband Baseband version

• getprop ro.csc.country_code Country Code

• getprop persist.sys.usb.config USB Configuration

• getprop storage.mmc.size Storage size

• getprop ro.crypto.state Encryption state



Linux commands

• id

• uname -a

• cat /proc/version

• uptime

• printenv

• cat /proc/partitions

• cat /proc/cpuinfo

• cat /proc/diskstats

• df

• df -ah

• mount

• ip address show wlan0

• ifconfig -a

• netstat -an

• lsof

• ps -ef

• top -n 1

• cat /proc/sched_debug

• vmstat

• sysctl -a

• ime list

• service list

• logcat -S -b all

• logcat -d -b all V:*



Linux commands

• Linux version

• System time and uptime

• IP Address on WiFi



netstat -an

• Network connections

• All sockets (-a)

• Don’t resolve names (-n)



ps -ef

• Running processes

• Every process (-e)

• Full-format listing (-f)



service list

• Running services



Services

 account

 activity

 alarm

 appops

 audio

 autofill

 backup

 battery

 batteryproperties

 batterystats

 bluetooth_manager

 carrier_config

 clipboard

 connectivity

 content

 cpuinfo

 dbinfo -v

 device_policy

 devicestoragemonitor

 diskstats



Services

 display

 dropbox

 gfxinfo

 iphonesubinfo

 jobscheduler

 location

 -t 60 meminfo -a

 mount

 netpolicy

 netstats

 network_management

 network_score

 notification --noredact

 package

 password_policy

 permission

 phone

 power

 procstats --full-details

 restriction_policy



Services

 sdhms

 sec_location

 secims

 search

 sensorservice

 settings

 shortcut

 stats

 statusbar

 storaged

 telecom

 usagestats

 user

 usb

 vibrator

 wallpaper

 wifi

 window



DUMPSYS
https://developer.android.com/studio/command-line/dumpsys

• dumpsys is a tool that runs on Android devices and provides 

information about system services. 

• You can call dumpsys from the command line using the 

Android Debug Bridge (ADB) to get diagnostic output for all 

system services running on a connected device



DUMPSYS
https://developer.android.com/studio/command-line/dumpsys

• To get a diagnostic output for all system services for your 

connected device, simply run adb shell dumpsys

• However, this outputs far more information than you would 

typically want

• For more manageable output, specify the service you want to 

examine by including it in the command
• For example, the command below provides system data for 

input components, such as touchscreens or built-in keyboards



Android Dumpsys Analysis to Indicate Driver Distraction
https://ccdcoe.org/uploads/2021/03/Android-Dumpsys-Analysis-to-Indicate-Driver-Distraction.pdf

• This paper introduces a non-intrusive 

analysis method which will extend the 

range of known techniques to determine 

a possible cause of driver distraction
• All Android dumpsys services are 

examined to identify the scope of 

evidence providers which can assist 

investigators in identifying the driver’s 

intentional interaction with the 

smartphone

• The study demonstrates that it is possible 

to identify a driver’s activities without 
access to their personal content



Android Dumpsys Analysis to Indicate Driver Distraction
https://ccdcoe.org/uploads/2021/03/Android-Dumpsys-Analysis-to-Indicate-Driver-Distraction.pdf

• As with any other operating system, much 

of the analytical data generated by 

system services, installed applications or 

telemetry functions is not designed for 

digital forensic purposes
• The primary drawback is that only a 

limited number of subject-relevant system 
events are time-stamped

• Moreover, system services do not 

necessarily generate diagnostic events 
with a unified timestamp format. 

• Even if some diagnostic data does survive 

a system reboot, particular content was 

shown to be eventually overwritten, either 

due to user interaction or just after regular 

system runtime



dumpsys account

• Account information



dumpsys appops

• App-ops are used for two 

purposes: Access control 

and tracking

• App-ops cover a wide 

variety of functionality 

from helping with runtime 

permissions to battery 

consumption tracking
• https://android.googlesource.com/p

latform/frameworks/base/+/master/

core/java/android/app/AppOps.md



dumpsys batterystats

• Batterystats is a tool included in the Android framework that 

collects battery data on a device



Profile battery usage with Batterystats and Battery Historian
https://developer.android.com/topic/performance/power/setup-battery-historian



dumpsys bluetooth_manager

• Bluetooth properties

• https://stackoverflow.com/questions

/57299411/interpreting-dumpsys-

bluetoothmanager-result



dumpsys bluetooth_manager | grep BOOT_COMPLETED



Bluetooth in Digital Mobile Forensics
https://www.scriptiebank.be/sites/default/files/thesis/2020-08/BaP_NickCasier_BluetoothInDigitalMobileForensics-CanPairingRequestBeFoundOnBluetoothDevices.pdf



dumpsys cpuinfo

• Display CPU information

• https://stackoverflow.com/questions

/24612982/interpreting-dumpsys-

cpuinfo

• https://stackoverflow.com/questions

/40186347/dumpsys-cpuinfo-in-

android-interpreting-the-results-of-

this-command



dumpsys dbinfo -v

• List all databases for each package



dumpsys diskstats

• Disk usage stats

• System, Cache and Data

• App size (Data and Cache)

• Photos

• Videos

• Audio

• Download



dumpsys diskstats

• Per-package stats

• Package size

• Data size

• Cache size

• Total size



dumpsys notification



dumpsys notification --noredact



dumpsys package



dumpsys package



dumpsys package



dumpsys usagestats



dumpsys usagestats



dumpsys vibrator



dumpsys wifi



dumpsys wifi



BUGREPORT
https://developer.android.com/studio/debug/bug-report#bugreportadb

• A bug report contains device logs, stack traces, and other 

diagnostic information



BUGREPORT
https://developer.android.com/studio/debug/bug-report#bugreport



BUGREPORT
https://source.android.com/setup/contribute/read-bug-reports



PACKAGE MANAGER
https://developer.android.com/studio/command-line/adb#pm

• Within an adb shell, you can issue commands with the 

package manager (pm) tool to perform actions and queries on 

app packages installed on the device

• While in the shell, the syntax is:



pm list users

• Prints all users on the system



pm list packages -f

• Prints all packages, including their associated APKs (-f)



pm list permissions -f

• Prints all known permissions, including all related information (-f)



ANDROID BACKUP

• Now deprecated, but still working with latest ADB release

adb backup -all -shared -system -keyvalue -apk -f backup.ab



ANDROID BACKUP

adb backup -all -shared -system -keyvalue -apk -f backup.ab



PULL
https://developer.android.com/studio/command-line/adb#copyfiles

• Use the pull and push commands to copy files to and from a 

device

• To copy a file or directory and its sub-directories from the 

device



Partial File System

• We can pull 

• /system folder, that contains the OS 

• /sdcard folder, that points to the emulated storage folder 

and contains media and other files

• The /data folder requires root access, but some files are always 

accessible

• APKs in /data/app/<package_name>
• /data/system/uiderrors.txt



APKs

• We can pull system and user-installed APKs

• Run pm list packages –f <package_name> to obtain the path

• Run adb pull <path_to_APK> to extract the file



Android Triage
https://blog.digital-forensics.it/2021/03/triaging-modern-android-devices-aka.html

• Bash script to extract data from an Android device



Android Triage

• Download android_triage.sh from 

https://github.com/RealityNet/android_triage

• Run sudo apt-get install dialog

• Run sudo apt-get install android-tools-adb

• Run chmod +x android_triage.sh

• Activate ADB on the Android Device

• Connect and pair the Android Device and 
the host

• Run ./android_triage.sh



iOS

• On iOS devices there are no native methods to interact with a 

“shell”
• The best suite of tools to interact at a low-level is 

Libimobiledevice
• It includes various command line utilities that can be used to 

extract:

• Device information

• Disk usage

• Battery information

• Installed applications

• Crash logs and sysdiagnose



idevicename

idevice_id –l

idevicedate



ideviceinfo -q com.apple.disk_usage.factory -x



ideviceinfo -q com.apple.purplebuddy -x



ideviceinfo -q com.apple.mobile.backup -x



ideviceinstaller -l -o list_system



ideviceinstaller -l -o list_user



ideviceinstaller -l -o xml



ideviceinstaller -l -o xml



Generate a sysdiagnose



Generate a sysdiagnose



idevicecrashreport -k



Sysdiagnose



iOS Sysdiagnose references
https://github.com/cheeky4n6monkey/iOS_sysdiagnose_forensic_scripts



ps.txt



taskinfo.txt



idevicebackup2 backup –full .



CONTACTS

Mattia Epifani

mattia.epifani@realitynet.it

@mattiaep


