
Prepared by Jon Stewart and Noah Rubin

Greppin’ Logs: Leveling Up Log Analysis
Jon Stewart and Noah Rubin

Prepared by Jon Stewart and Noah Rubin
2

Agenda

I. Introductions and Guiding Principles

II. Forensics is Data Engineering and Data Science

III. Core Unix Command Line Tools

IV. Processing Structured Data

V. Performance Upgrades

VI. Lightgrep

VII. Scaling with AWS

Prepared by Jon Stewart and Noah Rubin
3

Introductions and Guiding Principles

Prepared by Jon Stewart and Noah Rubin
4

Whoami

Noah Rubin

Director, DFIR at Stroz Friedberg LLC, an Aon Company.

5 years of experience as an incident responder.

Before Stroz Friedberg, worked as a software engineer and data scientist for data

journalism and healthcare startups, as well as a technology company in China.

Passionate about automating and scaling forensic analysis capabilities and open

source software.

Jon Stewart

VP, Solutions Development at Stroz Friedberg LLC, an Aon Company

Leads and manages a software development team building internal DFIR tools.

Before Stroz Friedberg, Jon co-founded Lightbox Technologies, Inc which created the

open source library and (now) command line tool Lightgrep, the “fastest computer

forensics search tool.”

(Not actually Jon Stewart)

Prepared by Jon Stewart and Noah Rubin
5

Guiding Principles

1) Prefer command line/programmatic tools over GUIs.

2) Use simple tools that accomplish a single task well.

3) Compose simple tools and create processing pipelines.

4) Do things fast (enough).

5) Forensics is Data Engineering and Data Science, and should be

approached as such.

Prepared by Jon Stewart and Noah Rubin
6

Forensics is Data Engineering and Data Science

Prepared by Jon Stewart and Noah Rubin
7

The Forensic Process

▪ Data Engineering: shape data into a usable state.

▪ Data Science: interpret data to extract actionable insights.

▪ The process:

1) Receive dataset from client or internal tooling

2) Define a set of questions to answer given the data

available

3) Determine the necessary engineering and analysis

steps to answer those questions

4) Shape and transform original data into intermediate

datasets

5) Execute the analysis plan and document findings

6) Repeat

▪ Key takeaways:

– The quicker the data engineering process, the sooner

you can provide insights during investigations.

– Try to define your questions before performing data

engineering.

– Never mutate the original dataset.

– Create intermediate datasets to avoid unnecessary

processing and reduce time between engineering and

analysis.

Prepared by Jon Stewart and Noah Rubin
8

Core Unix Command Line Tools

Prepared by Jon Stewart and Noah Rubin
9

Unix: A Brief History

▪ Unix, a play on the project that inspired it named Multics, was first

created in 1969-1970 at AT&T’s Bell Labs.

▪ Ken Thompson, Dennis Ritchie, Brian Kernighan, and others at

Bell Labs wanted a simple time-sharing system: “What we wanted

to preserve was not just a good environment in which to do

programming, but a system around which a fellowship could

form.”

▪ Many of the features present in Unix in the 1970s are still used

heavily today:

– Man pages

– IO redirection

– Device files (part of the PDP-7 Unix file system)

– Pipes

▪ Many command line utilities today known as the “GNU coreutils”

originated from early Unix versions:

– cat (replacement for the “pr” program present in Multics)

– sort (ported from Multics)

– uniq

– awk (first appeared in Version 7 Unix)

– sed (first appeared in Version 7 Unix)

https://en.wikipedia.org/wiki/Computer_programming

Prepared by Jon Stewart and Noah Rubin
10

Core Unix Command Line Tools

▪ Key command line tools that should be part of any analysis toolbox:

– cat

• Print file to standard output.

– head

• Preview content from the top of a file.

– tail

• Preview content from the bottom of a file.

– less

• View content from a file or stream in a buffer.

– grep

• Search for patterns in files or streams.

– cut

• Extract sections of text from lines in a file or stream.

– awk

• Programming language and runtime for text processing.

– sed

• Transform lines of a file or stream.

– sort

• Sort lines of a file or stream.

– uniq

• Dedupe and aggregate lines of a file or stream.

Prepared by Jon Stewart and Noah Rubin
11

Processing Structured Data

Prepared by Jon Stewart and Noah Rubin
12

Processing Structured Data: CSV

▪ csvkit is a purpose-built set of command line tools for processing

and analyzing CSV, TSV, and other row-oriented tabular data.

▪ Every csvkit tool by default normalizes input data by:

– Removing optional quote characters

– Changing the delimiter to comma (“,”)

– Changing the record delimiter to line feed (“\n”)

– Changing the quote character to double quotation (‘”’)

– Changing the encoding to UTF-8

▪ csvclean: report rows with incorrect number of columns.

▪ csvformat: change the delimiter, quote character, line terminator,

or escape character.

▪ csvlook: print tabular data in a markdown-friendly format.

▪ csvstat: print descriptive statistics for each columns.

▪ csvcut: like cut but handles tabular data intricacies better.

▪ csvjoin: join tabular data using similar to logic to SQL joins.

Prepared by Jon Stewart and Noah Rubin
13

Processing Structured Data: CSV

Example: Using csvkit to analyze an

employee list and associated salary data.

▪ Check the columns of each dataset

▪ Preview the first 5 rows to get a sense

for what the data look like

▪ Check each dataset for

inconsistencies/errors and fix them

– Always leave the source data as-is

and create a copy with cleaned data

▪ Get descriptive statistics for each column

in the datasets

▪ Join them together to get a master list of

employees and their salaries

▪ Cut the combined dataset to show an

exact match with the original source data

Prepared by Jon Stewart and Noah Rubin
14

Processing Structured Data: JSON

▪ jq is the command line swiss army knife for dealing with

JSON data. Its feature set covers functionality provided by

sed, awk, and (sometimes) grep for text processing.

– Process arrays of JSON objects.

– Extract specific keys and values from potentially nested

JSON objects.

– Perform arithmetic operations over values.

– Filter objects based on equality checks, regular

expressions, and other complex criteria.

– Assign values to variables and build complex processing

pipelines.

– Supports a streaming mode to process gigabytes of JSON

data quickly.

– Transform data into CSV with a single operator.

Prepared by Jon Stewart and Noah Rubin
15

Processing Structured Data: JSON

▪ Example: Extracting tabular data from

compressed AWS CloudTrail log records.

– Unzip the CloudTrail log file into JSON

– Check the top-level key names, types,

and lengths

– Check the key names for each

“Records” object

– Generate a CSV from each “Records”

object with specific fields of interest

– Generate descriptive statistics for each

column

Prepared by Jon Stewart and Noah Rubin
16

Performance Upgrades

Prepared by Jon Stewart and Noah Rubin
17

Performance Upgrades

▪ find: query the filesystem for specific files and directories.

– https://linux.die.net/man/1/find

▪ parallel: run commands in parallel over files or streams.

– https://www.gnu.org/software/parallel/parallel.html

– xargs can be used similarly, but we recommend parallel

▪ xsv: command line tabular data toolkit written in Rust.

– https://docs.rs/crate/xsv/0.13.0

▪ simdjson: library for parsing JSON using SIMD instructions written in C++.

– https://simdjson.org/

▪ orjson: Python library for parsing JSON, much faster than standard json module.

– https://pypi.org/project/orjson/

Honorable Mentions
▪ Visidata (vd): command line interactive analysis tool for tabular data. Like Excel, but with the power of

Python and in the terminal.

– https://www.visidata.org/

▪ textql: command line tool for querying tabular data with SQL.

– https://github.com/dinedal/textql

https://linux.die.net/man/1/find
https://www.gnu.org/software/parallel/parallel.html
https://docs.rs/crate/xsv/0.13.0
https://simdjson.org/
https://pypi.org/project/orjson/
https://www.visidata.org/
https://github.com/dinedal/textql

Prepared by Jon Stewart and Noah Rubin
18

Use your CPU cores! Be smart with I/O!

• Intel Core2: 2006

Single-core work has

been obsolete for 15

years.

• M.2 NVMe drives are

cheap and fast.

• Put output on a

different drive to

avoid mixed I/O.

Prepared by Jon Stewart and Noah Rubin
19

Performance Upgrades

▪ Example: Use find, parallel, gunzip, jq, tr,

and sed to unzip over 1,000 CloudTrail log

files and parse the individual JSON records

to CSV.

Prepared by Jon Stewart and Noah Rubin
20

Lightgrep

Prepared by Jon Stewart and Noah Rubin
21

Lightgrep Overview

▪ Multipattern regular expression search engine for forensics

▪ “Lightgrep for EnCase” released 2012

▪ Library open sourced and integrated into bulk_extractor in 2013

▪ Standard Perl-compatible syntax

▪ Robust Unicode support, 100+ encodings

▪ Powers a lot of forensics processing at Stroz Friedberg

▪ Today: 🎉 Version 1.5 🤩

– lightgrep command line tool

• Search binary or text

• Windows build available

– Open source license change: GPL v3 → Apache 2

– https://github.com/strozfriedberg/lightgrep

https://github.com/strozfriedberg/lightgrep

Prepared by Jon Stewart and Noah Rubin
22

Why is multipattern search better for logs?

Prepared by Jon Stewart and Noah Rubin
23

Lightgrep Command Line in Action

▪ TODO

Prepared by Jon Stewart and Noah Rubin
24

Scaling with AWS

Prepared by Jon Stewart and Noah Rubin
25

Scalable Log Processing with AWS

▪ S3

– Simple Storage Service

– Files are “objects”

– No filesystem, GET/PUT over HTTP

– 2.3₵ / GB / month, ~$23/TB

– Safe, minimal chance of data loss

▪ Lambda

– Serverless compute

– Just a function!

– Different events can trigger function

• e.g., S3 upload

– Cheap, and no cost when idle

▪ CDK

– Cloud Development Kit

– AWS DevOps scripting library

– Configures AWS resources & services

– Put security rules all in one place

https://aws.amazon.com/s3/
https://aws.amazon.com/lambda/
https://aws.amazon.com/cdk/

Prepared by Jon Stewart and Noah Rubin
26

Storage + CPU == Near-Infinite Processing

Bottleneck-free!

Prepared by Jon Stewart and Noah Rubin
27

Deploying with AWS CDK

▪ Example: deploying a full-scale log processing

pipeline with S3 and Lambda using AWS CDK.

– Make sure NodeJS, NPM, and the AWS CDK

command line interface are installed

– Navigate to the “cdk-app” directory within the

greppin-logs repo

– Review the CDK app configuration and Lambda

function code

– Deploy the CDK app using “cdk deploy”

– Check the stack in AWS CloudFormation

https://github.com/strozfriedberg/greppin-logs

Prepared by Jon Stewart and Noah Rubin
28

Prepared by Jon Stewart and Noah Rubin
29

Resources

▪ GitHub repository created for this talk: https://github.com/strozfriedberg/greppin-logs

– Template CDK app

– Shell scripts with the commands run during examples in this presentation

– Dockerfile with most of the tools discussed during the presentation

– Some example datasets

▪ Lightgrep: https://github.com/strozfriedberg/lightgrep

▪ GNU coreutils documentation: https://www.gnu.org/software/coreutils/

▪ csvkit: https://csvkit.readthedocs.io/en/latest/

▪ jq: https://stedolan.github.io/jq/

▪ GNU parallel: https://www.gnu.org/software/parallel/

▪ xsv: https://docs.rs/crate/xsv/0.13.0

▪ simdjson: https://simdjson.org/

▪ orjson: https://pypi.org/project/orjson/

▪ Visidata: https://www.visidata.org/

▪ textql: https://github.com/dinedal/textql

▪ AWS CloudTrail: https://aws.amazon.com/cloudtrail/

▪ AWS CDK: https://aws.amazon.com/cdk/

https://github.com/strozfriedberg/greppin-logs
https://github.com/strozfriedberg/lightgrep
https://www.gnu.org/software/coreutils/
https://csvkit.readthedocs.io/en/latest/
https://stedolan.github.io/jq/
https://www.gnu.org/software/parallel/
https://docs.rs/crate/xsv/0.13.0
https://simdjson.org/
https://pypi.org/project/orjson/
https://www.visidata.org/
https://github.com/dinedal/textql
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cdk/

Prepared by Jon Stewart and Noah Rubin
30

Appendix: Core Command Line Tools

Prepared by Jon Stewart and Noah Rubin
31

Core Command Line Tools: cat

▪ Description:

– Command line utility for printing files to standard out and

concatenating files. Typically used at the beginning of a

pipeline to pipe content to another command.

▪ Examples:

– Print file to standard output:

cat FILENAME

– Concatenate multiple files into a new file:

cat FILENAME01 FILENAME02 > NEWFILENAME

Prepared by Jon Stewart and Noah Rubin
32

Core Command Line Tools: head

▪ Description:

– Preview content from the beginning of a file or stream. By

default, head treats its input as line-oriented text content and will

display the first 10 lines on standard output.

▪ Examples:

– Print the first 10 lines of a text file:

head FILENAME

– Print the first 100 lines of a text file:

head -n 100 FILENAME

– Print the first 30 bytes of a binary file:

head -c 30 FILENAME

– Print all but the last 30 bytes of a binary file:

head -c -30 FILENAME

– Print the first 5 lines where the line delimiter is the NUL byte

instead of newline (“\n”):

head -n 5 -z FILENAME

Prepared by Jon Stewart and Noah Rubin
33

Core Command Line Tools: tail

▪ Description:

– Preview content from the end (or beginning) of a file or

stream. By default, tail treats its input as line-oriented text

content and will display the last 10 lines on standard

output.

▪ Examples:

– Print the last 10 lines of a text file:

tail FILENAME

– Print the last 100 lines of a text file:

tail -n 100 FILENAME

– Print all but the first line of a text file:

tail -n +2 FILENAME

– Print the last 30 bytes of a binary file:

tail -c 30 FILENAME

– Print all but the first 30 bytes of a binary file:

tail -c -30 FILENAME

– Print the last 5 lines where the line delimiter is the NUL

byte instead of newline (“\n”):

tail -n 5 -z FILENAME

– Continuously watch a file for new content:

tail -f FILENAME

Prepared by Jon Stewart and Noah Rubin
34

Core Command Line Tools: less

▪ Description:

– Terminal pager program for viewing contents of a file one

“screen” at a time. Like more but supports forward and

backward navigation. Can load file content before the

whole file is read.

▪ Examples:

– View file contents:

less FILENAME

– View standard output stream from another command:

head FILENAME | less

– View standard output stream and quit when reach EOF:

tail FILENAME | less -E

– View standard output stream and write contents to new file

while being viewed:

cat FILENAME | less –oNEWFILENAME

– View standard output stream and jump to the first

occurrence of a pattern:

cat FILENAME | less -pPATTERN

Prepared by Jon Stewart and Noah Rubin
35

Core Command Line Tools: grep

▪ Description:

– Line-oriented pattern searching tool. Typically supports basic, extended, and Perl (PCRE) regular

expressions. Has in the tens of command line flags that control matching and output behavior.

▪ Examples:

– Search for the phrase “hello, world!” in a file:

grep –F ‘hello, world!’ FILENAME

– Extract all IP addresses from a file:

grep -oE ‘[0-9]{1,3}\.[0-9]{1,3}\. [0-9]{1,3}\. [0-9]{1,3}’ FILENAME

– Search a list of keywords contained in a newline-separated file in another file:

grep –f KEYWORDFILE FILENAME

– Include matching filenames and line numbers in the output:

grep -Hn ‘pattern’ FILENAME

– Include all content within 5 lines before or after a matching line:

grep -A5 -B5 ‘pattern’ FILENAME

Prepared by Jon Stewart and Noah Rubin
36

Core Command Line Tools: cut

▪ Description:

– Line-oriented tool for extracting parts of each line from files

or streams. Does not support complex field delimiters or

field reordering.

▪ Examples:

– Extract the first and third columns from a TSV file:

cut -f1,3 FILENAME.tsv

– Extract the second and fourth columns from a CSV file

(without intra-field commas):

cut -d’,’ -f2,4 FILENAME.csv

Prepared by Jon Stewart and Noah Rubin
37

Core Command Line Tools: awk

▪ Description:

– Line-oriented programming language and command line

tool designed for text processing and data extraction.

Supports variables, user-defined functions, arithmetic,

aggregation, and other useful features.

▪ Examples:

– Print the first and fourth columns in a space-separated file:

awk ‘{ print $5 }’ FILENAME

– Print the fourth column in a space-separated file in lines

containing the word “bar”:

awk ‘/{{bar}}/ { print $4 }’ FILENAME

– Sum the last column in a CSV and print the total:

awk -F’,’ ‘{ sum+=$NF } END {print sum}’

– Print all lines from a CSV where the fifth column equals a

specific value:

awk -F’,’ ‘($5 == value)’

– Convert MySQL dump file to SQLite-compatible dump:

See https://github.com/dumblob/mysql2sqlite

https://github.com/dumblob/mysql2sqlite

Prepared by Jon Stewart and Noah Rubin
38

Core Command Line Tools: sed

▪ Description:

– Line-oriented command line tool for text processing and data

extraction, similar in nature to awk. The most common use

case is substitution, often using regular expressions and

sometimes in-place.

▪ Examples:

– Redact IP addresses from a (log) file in-place:

sed -i‘’ -r 's/[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}/X.X.X.X/g’

FILENAME

– Remove the first (header) and second rows from a CSV file:

sed ‘1,2d’ FILENAME.csv

– Remove empty lines or lines with only spaces from a file:

sed ‘'/^[[:space:]]*$/d’’ FILENAME

– Combine every two lines in a file into a single line separated

by a space:

sed 'N; s/\n / /; P; D’ FILENAME

Prepared by Jon Stewart and Noah Rubin
39

Core Command Line Tools: sort

▪ Description:

– Line-oriented command line tool for sorting content (using

the merge sort algorithm).

▪ Examples:

– Sort a file using natural ordering and print the first 5 lines:

sort FILENAME | head -n 5

– Sort a CSV file by the third column using numeric ordering:

sort -t ‘,’ -k 3 -n FILENAME

– Check if a file is already sorted using natural ordering:

sort -c FILENAME

– Sort a space-separated file by the first column using four

parallel threads:

sort -k 1 --parallel=4 FILENAME

– Randomly sort a file (like shuf):

sort -R FILENAME

https://en.wikipedia.org/wiki/Merge_sort

Prepared by Jon Stewart and Noah Rubin
40

Core Command Line Tools: uniq

▪ Description:

– Line-oriented command line tool for deduplicating and

aggregating text data. Typically used together with sort

because it only dedupes already-sorted data.

▪ Examples:

– Print unique values with counts of the fifth column in a CSV

sorted descending:

awk -F‘,’ ‘{ print $5 }’ FILENAME.csv | sort | uniq –c | sort -nr

– Print duplicate lines from a file (one for each duplicated line):

sort FILENAME | uniq -d

– Print all unique lines from a file:

sort FILENAME | uniq -u

About Cyber Solutions

Aon’s Cyber Solutions offers holistic cyber risk

management solutions, unsurpassed investigative skills,

and proprietary technologies to help clients uncover and

quantify cyber risks, protect critical assets, and recover

from cyber incidents.

About Aon

Aon plc (NYSE:AON) is a leading global professional

services firm providing a broad range of risk, retirement

and health solutions. Our 50,000 colleagues in 120

countries empower results for clients by using

proprietary data and analytics to deliver insights that

reduce volatility and improve performance.

© Aon plc 2018. All rights reserved.

Cyber security services offered by Stroz Friedberg Inc. and its

affiliates. Insurance products and services offered by Aon Risk

Insurance Services West, Inc., Aon Risk Services Central, Inc.,

Aon Risk Services Northeast, Inc., Aon Risk Services

Southwest, Inc., and Aon Risk Services, Inc. of Florida and their

licensed affiliates.

The information contained herein and the statements expressed

are of a general nature and are not intended to address the

circumstances of any particular individual or entity. Although we

endeavor to provide accurate and timely information and use

sources we consider reliable, there can be no guarantee that

such information is accurate as of the date it is received or that it

will continue to be accurate in the future. No one should act on

such information without appropriate professional advice after a

thorough examination of the particular situation.

aon.com/cyber-solutions

https://www.aon.com/cyber-solutions

